在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
**升。
你有一辆油箱容量无限的的汽车,从第 **i
**个加油站开往第 **i+1
**个加油站需要消耗汽油 cost[i]
**升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
1.暴力解法:
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
for (int i = 0; i < gas.length; i++) {
int sum = gas[i];
boolean flag = true;
for (int j = 1; j < gas.length + 1; j++) {
int index = (i + j) >= gas.length ? (i + j) - (gas.length) : i + j;
int pre = index - 1 < 0 ? gas.length - 1 : index - 1;
sum = sum - cost[pre];
if (sum < 0) {
flag = false;
break;
}
sum = sum + gas[index];
}
if (flag) {
return i;
}
}
return -1;
}
}
优化 A最远能到达的点是B 那么AB中间的点最远到达一定小于等于B
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int i=0;
while(i < gas.length){
int j = i;
int sum = gas[i];
while(sum>=cost[j]){
sum = sum - cost[j];
j = (j+1)%gas.length;
sum = sum + gas[j];
if(i==j){
return i;
}
}
if(j<i){
return -1;
}
i=j+1;
}
return -1;
}
}