女神高圆圆童年照,包浆老图立刻清晰到头发丝是一种怎样的体验。Python,马赛克,克星

包浆老图立刻清晰到头发丝是一种怎样的体验?

看这明亮的眼眸、清晰的发丝,原本模糊的人像立刻添了几分灵动:

在这里插入图片描述(这就是用AI修复的高圆圆童年照)

时间更久远的历史名人照片也能搞定。

鲁迅先生年轻时意气风发的模样,被还原地淋漓尽致:

在这里插入图片描述
而以上这些效果,无需专业PS技能,只用一个网页端的Demo,点点鼠标上传图片就能搞定!

这么方便的修复神器,立刻引来了广大网友的围观和试玩。

不少人都用自己童年时低像素的照片来试验,这效果仿佛十几年前的自己就站在眼前了:

在这里插入图片描述
已经糊到包浆的照片也能秒变人像大片,这feel立刻就来了~

在这里插入图片描述
多人合照修复也都是小case,这效果让网友们直呼惊到了惊到了。

在这里插入图片描述
这就是已经多日霸占GitHub热榜第一的AI修复项目:GFP-GAN,Star数高达8400。

在这里插入图片描述

最近,它在网上又掀起了一股老照片修复热潮,让人们争相试玩!

而这一项目由腾讯PCG ARC实验室提出,其相关论文已被CVPR2021收录。

现在,就让我们赶紧来体验一下它的神奇之处吧。

Demo试玩

GFP-GAN可通过Colab、Hugging Face或本地运行代码进行试玩。

我们今天是在Hugging Face网页端体验。

在这里插入图片描述

如界面所示,只需将你想修复的照片拖进左边的图片框内,点击Submit即可。

比如我们上传一张的照片,得到的效果就是这样:

在这里插入图片描述
而且它还会自动摆正人脸。

让人惊喜的是,遇到人像戴眼镜的情况,GFP-GAN甚至连镜片反光都能高清化处理。

u1s1(有一说一),修复后的效果完全看不出是几十年前的照片啊!

在这里插入图片描述

就连齐天大圣孙悟空的猴脸,对于GFP-GAN而言也是so easy,并且对光线的修复效果格外突出。

在这里插入图片描述
并且修复中也不会过度磨皮,人脸上自然的皱纹也全部精细展现。
在这里插入图片描述

用GAN修复人像

那么GFP-GAN如此强大的效果是怎么实现的呢?

研究人员受到StyleGAN2的启发:

既然GAN已经能生成如假乱真的图片,那么它所包含的面部信息,是不是也能帮助人脸修复呢?

由此,在GFP-GAN的模型框架中,主要用到了一个退化清除模块和一个预训练的GAN作为先验。

两个模块通过隐编码映射和多个信道分割空间特征变化层(CS-SFT)连接。

在这里插入图片描述
训练过程中,首先要对低质量人脸进行降噪等粗处理,然后保留面部信息。

在保真度方面,研究人员引入了一个面部损失( Facial Component Loss),判断哪些细节需要提升保留,然后再用识别保留损失(Identity Preserving Loss)进行修复。
在这里插入图片描述

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

在这里插入图片描述

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

在这里插入图片描述

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

在这里插入图片描述

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值