本篇文章是一篇关于图像卷积的帖子
言前
上一篇文章,我们讲解了边缘梯度盘算函数,这篇文章我们来了解图像金字塔。
图像金字塔?
图像金字塔被普遍用于盘算机视觉用应中。
图像金字塔是一个图像合集,合集中有所的图像都源于同一个原始图像,而且是通过对原始图像续连降样采取得的。
——《学习OpenCV》
罕见的图像金字塔有面下两种:
- 高斯金字塔(Gaussian pyramid): 用来向下样采
- 拉普拉斯金字塔(Laplacian pyramid): 用来从金字塔低层图像重建下层未样采图像
高斯金字塔
相似金字塔一样,高斯金字塔从底层原始图渐逐向下样采,越来越小。
那么如何取得下一层图像呢?
首先,和高斯内核卷积:
然后,将有所偶数行列删掉。
可见,这样下一级图像约为上一级的1/4。
那么向上变换如何变换呢?
首先先将图片行列扩大为本来的两倍,然后将添加的行列用0充填。
最后用刚刚的高斯内核乘以4后卷积。
高斯金字塔实现
var pyrDown = function(__src, __dst){ __src || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */); if(__src.type && __src.type == "CV_RGBA"){ var width = __src.col, height = __src.row, dWidth = ((width & 1) + width) / 2, dHeight = ((height & 1) + height) / 2, sData = __src.data, dst = __dst || new Mat(dHeight, dWidth, CV_RGBA), dstData = dst.data; var withBorderMat = copyMakeBorder(__src, 2, 2, 0, 0), mData = withBorderMat.data, mWidth = withBorderMat.col; var newValue, nowX, offsetY, offsetI, dOffsetI, i, j; var kernel = [1, 4, 6, 4, 1, 4, 16, 24, 16, 4, 6, 24, 36, 24, 6, 4, 16, 24, 16, 4, 1, 4, 6, 4, 1 ]; for(i = dHeight; i--;){ dOffsetI = i * dWidth; for(j = dWidth; j--;){ for(c = 3; c--;){ newValue = 0; for(y = 5; y--;){ offsetY = (y + i * 2) * mWidth * 4; for(x = 5; x--;){ nowX = (x + j * 2) * 4 + c; newValue += (mData[offsetY + nowX] * kernel[y * 5 + x]); } } dstData[(j + dOffsetI) * 4 + c] = newValue / 256; } dstData[(j + dOffsetI) * 4 + 3] = mData[offsetY + 2 * mWidth * 4 + (j * 2 + 2) * 4 + 3]; } } }else{ error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */); } return dst; };
dWidth = ((width & 1) + width) / 2,
dHeight = ((height & 1) + height) / 2
这面里a & 1等同于a % 2,即求除以2的余数。
我们实现时候没有按照面上的骤步,因为这模样效率就低了,而是直接创立一个原矩阵1/4的矩阵,然后卷积时候跳过那些要被删掉的行和列。
面下也一样,创立后卷积,由于一些地方一定是0,所以际实卷积中程过,内核有些素元是被疏忽的。
var pyrUp = function(__src, __dst){ __src || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */); if(__src.type && __src.type == "CV_RGBA"){ var width = __src.col, height = __src.row, dWidth = width * 2, dHeight = height * 2, sData = __src.data, dst = __dst || new Mat(dHeight, dWidth, CV_RGBA), dstData = dst.data; var withBorderMat = copyMakeBorder(__src, 2, 2, 0, 0), mData = withBorderMat.data, mWidth = withBorderMat.col; var newValue, nowX, offsetY, offsetI, dOffsetI, i, j; var kernel = [1, 4, 6, 4, 1, 4, 16, 24, 16, 4, 6, 24, 36, 24, 6, 4, 16, 24, 16, 4, 1, 4, 6, 4, 1 ]; for(i = dHeight; i--;){ dOffsetI = i * dWidth; for(j = dWidth; j--;){ for(c = 3; c--;){ newValue = 0; for(y = 2 + (i & 1); y--;){ offsetY = (y + ((i + 1) >> 1)) * mWidth * 4; for(x = 2 + (j & 1); x--;){ nowX = (x + ((j + 1) >> 1)) * 4 + c; newValue += (mData[offsetY + nowX] * kernel[(y * 2 + (i & 1 ^ 1)) * 5 + (x * 2 + (j & 1 ^ 1))]); } } dstData[(j + dOffsetI) * 4 + c] = newValue / 64; } dstData[(j + dOffsetI) * 4 + 3] = mData[offsetY + 2 * mWidth * 4 + (((j + 1) >> 1) + 2) * 4 + 3]; } } }else{ error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */); } return dst; };
效果图
系列录目
参考资料
文章结束给大家分享下程序员的一些笑话语录: Borland说我很有前途,Sun笑了;Sun说我很有钱,IBM笑了;IBM说我很专业,Sybase笑了;Sybase说我数据库很牛,Oracle笑了;Oracle说我是开放的,Linux笑了;Linux说我要打败Unix,微软笑了;微软说我的系统很稳定,我们都笑了。