hdu1054 二分匹配求树的最小点覆盖(无向图)

题意:给定一颗无向树,求最小点覆盖。

连通的有向图的情况,将点集copy到L和R集合,建一个二分图,由L集合的点向R集合连一条有向边,这该二分图的最大匹配数就等于最小点覆盖数。连边如(0, 1),则只连L0->R1

本题无向图的连边如(0, 1),则要连L0->R1和L1->R0,最小点覆盖数==最大匹配数/2

#include <cstdio>
#include <cstring>

using namespace std;
const int N = 1510;
const int M = N*N;
int linker[N];
bool vis[N];
int to[M],nxt[M];
int head[N],tot;
int n;

void addedge(int u, int v)
{
    ++tot;
    to[tot] = v;
    nxt[tot] = head[u];
    head[u] = tot;
}

bool dfs(int u)
{
    for(int i = head[u]; ~i; i = nxt[i])
    {
        int v = to[i];
        if(!vis[v])
        {
            vis[v] = 1;
            if(linker[v]==-1 || dfs(linker[v]))
            {
                linker[v] = u;
                return 1;
            }
        }
    }
    return 0;
}

int hungary()
{
    int ret = 0;
    memset(linker, -1, sizeof(linker));
    for(int i = 0; i < n; ++i)
    {
        memset(vis, 0, sizeof(vis));
        if(dfs(i))
            ++ret;
    }
    return ret;
}

int main()
{
    while(~scanf("%d", &n))
    {
        memset(head, -1, sizeof(head));
        tot = -1;
        for(int i = 1; i <= n; ++i)
        {
            int u, v, k;
            scanf("%d:(%d)", &u, &k);
            while(k--)
            {
                scanf("%d", &v);
                addedge(u, v);
                addedge(v, u);
            }
        }
        printf("%d\n", hungary()>>1);
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值