学习笔记十五——几种非线性方程的数值解法

在许多实际问题中,问题的解决常常归结为解非线性代数方程组
F ( X ) = 0 , F(X)=0, F(X)=0,
这里
X = ( x 1 , x 2 , ⋯   , x n ) T ( x i ∈ [ a i , b i ] ) X=(x_1,x_2,\cdots,x_n)^T(x_i\in[a_i,b_i]) X=(x1,x2,,xn)T(xi[ai,bi])
F ( X ) = ( f 1 ( X ) , f 2 ( X ) , ⋯   , f n ( X ) ) T ∈ R n F(X)=(f_1(X),f_2(X),\cdots,f_n(X))^T\in R^n F(X)=(f1(X),f2(X),,fn(X))TRn
该方程组的标量情形可简化为
f ( x ) = 0 , x ∈ [ a , b ] f(x)=0,\quad x\in[a,b] f(x)=0,x[a,b]
一般而言,非线性方程的精确求解非常困难。因此,人们常常需要借助各种数值方法对其进行求解。

二分法

方法就是大家一直以来学的那些,我在这里就只增加一个在进行了 k k k 步之后就可以达到精度的公式:
k > ln ⁡ ( b − a ) − l n ( 2 ε ) ln ⁡ 2 k>\frac{\ln(b-a)-ln(2\varepsilon)}{\ln2} k>ln2ln(ba)ln(2ε)
其中 ε \varepsilon ε 代表精度, f ( x ) ∈ C ( [ a , b ] ) f(x)\in C([a,b]) f(x)C([a,b]).

Newton迭代法

选择适合的点 ( x 0 , f ( x 0 ) )

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值