文章目录
一、原理方法
1.原理
- 图像形态学操作时候,可以通过自定义的结构元素实现结构元素对输入图像一些对象敏感、另外一些对象不敏感,这样就会让敏感的对象改变而不敏感的对象保留输出。通过使用两个最基本的形态学操作 – 膨胀与腐蚀,使用不同的结构元素实现对输入图像的操作、得到想要的结果。
- 膨胀,输出的像素值是结构元素覆盖下输入图像的最大像素值
- 腐蚀,输出的像素值是结构元素覆盖下输入图像的最小像素值
- 二值图像与灰度图像上的膨胀操作
- 二值图像与灰度图像上的腐蚀操作
2.结构元素
- 上述膨胀与腐蚀过程可以使用任意的结构元素
- 常见的形状:矩形、园、直线、磁盘形状、砖石形状等各种自定义形状。
二、处理步骤
第一步:输入彩色图像
imread
第二步:转换为灰度图像
cvtColor
Mat gray;
if(src.channels() ==3 )
{
cvtColor(src,gray,CV_BGR2GRAY)
}
else
{
gray = src;
}
imshow(OUTPUT_WIN,gray);
第三步:转换为二值图像
adaptiveThreshold
adaptiveThreshold(
Mat src, // 输入的灰度图像
Mat dest, // 二值图像
double maxValue, // 二值图像最大值
int adaptiveMethod // 自适应方法,只能其中之一 –
// ADAPTIVE_THRESH_MEAN_C , ADAPTIVE_THRESH_GAUSSIAN_C
int thresholdType,// 阈值类型
int blockSize, // 块大小
double C // 常量C 可以是正数,0,负数
)
第四步:定义结构元素
- 一个像素宽的水平线 - 水平长度 width/30
- 一个像素宽的垂直线 – 垂直长度 height/30
第五步:开操作(腐蚀+膨胀)-检测
第六步:后处理
bitwise_not(Mat bin, Mat dst)像素取反操作,255 – SrcPixel
模糊(blur)
三、综合例程
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("D:/vcprojects/images/chars.png");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
char INPUT_WIN[] = "input image";
char OUTPUT_WIN[] = "result image";
namedWindow(INPUT_WIN, CV_WINDOW_AUTOSIZE);
imshow(INPUT_WIN, src);
Mat gray_src;//转换为灰度图像
cvtColor(src, gray_src, CV_BGR2GRAY);
imshow("gray image", gray_src);
Mat binImg;//二值化
adaptiveThreshold(~gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
imshow("binary image", binImg);
// 水平结构元素
Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));
// 垂直结构元素
Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));
// 矩形结构
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
Mat temp;
erode(binImg, temp, kernel); //腐蚀操作
dilate(temp, dst, kernel); //膨胀操作
// morphologyEx(binImg, dst, CV_MOP_OPEN, vline);
bitwise_not(dst, dst);
//blur(dst, dst, Size(3, 3), Point(-1, -1));
imshow("Final Result", dst);
waitKey(0);
return 0;
}