星影L的博客

人生的坎坷,一半是生活挖的坑,一半是自己的棱角刺的洞!

排序:
默认
按更新时间
按访问量

对solid平台所测数据进行转化

solid平台测序在目前已经不常见了,但是,很不幸的是我第一次下载Reads就遇上了。所以,在网上搜集了很多资料,在此整理了一下。 首先,solid测序结果他是color space 编码,不是普通的ATCG四个碱基编码,所以在格式上就不相同。 它是四行为一条read,从@行开始到!行结束...

2018-05-17 10:06:47

阅读数:2

评论数:0

深度学习手记(六)之实现稀疏自编码算法(SAE)的优化过程

简单介绍自编码算法(SAE) 首先,自编码算法是一种无监督算法,可以自动从无标注数据中学习特征,可以给出比原始数据更好的特征描述。当然,这是利用了自编码的一种属性:稀疏性,因为具有稀疏性,完成了特征的自动选择而不是采用随机的方式,这种方式明显要靠谱一些。就跟主成分分析方法(PCA)类似,自动完...

2018-05-11 10:04:23

阅读数:17

评论数:0

module 'pandas.core.computation' has no attribute 'expressions'解决办法

出现此等“module ‘pandas.core.computation’ has no attribute xxxx”问题,都是pandas和dask两个包的版本不相配造成的。所以,要注意dask和pandas的版本。 查看自己的dask和pandas包的版本,如果,是这样的话那就得进行下面...

2018-05-09 15:33:17

阅读数:11

评论数:0

特征工程与建模分析

奥斯汀动物中心是美国最大的无杀伤动物收容所,每年为18,000多只动物提供护理和庇护,并参与一系列县,市和全州保护和照护废弃物的举措,处于危险中,并放弃了动物。作为奥斯汀市开放数据计划的一部分,奥斯汀动物中心提供其收集的数据集,其中包含进入奥斯汀动物服务系统的动物的统计数据和结果。 Austin...

2018-05-02 17:02:47

阅读数:19

评论数:0

深度学习手记(五)之LeNet-5预测模型

直接进入主题,大名鼎鼎的LeNet诞生于1994年,是最早的深层卷积神经网络之一,并且推动了深度学习的发展。LeNet模型是由Yann LeCun所完成的,他一直认为直接将每个像素作为多层神经网络的输入是不能利用图像本身所含有的空间相关性,效率大打折扣。 LeNet5当时的特征有如下几点: ...

2018-04-18 10:31:56

阅读数:26

评论数:0

关于python中ggplot包出现 'DataFrame' object has no attribute 'sort'问题的解决方法

最近发现python中也有ggplot包与R语言上的ggplot2库中的函数大体上一样,只有少数没有在python上实现,类似于coord_flip() 函数可以将柱状图变为水平放置的,在python中就没有办法实现。但是,大多数是可以使用的,这也大大方便了数据处理后的可视化操作。 在使用中还发...

2018-04-08 16:28:15

阅读数:53

评论数:0

浅谈朴素贝叶斯算法原理

朴素贝叶斯毫无疑问是对贝叶斯统计方法的朴素解释为基础。尽管存在朴素的一面,但是,这种方法应用的很广泛且都取得了不错的效果。特征类型和形式多种多样的数据集也是用这种方法进行分类。 贝叶斯定理 朴素贝叶斯算法 算法应用示例 贝叶斯定理 首先,要明白贝叶斯统计方式与统计学中的频率概念是不同...

2018-04-08 15:34:32

阅读数:19

评论数:0

深度学习手记(五)之优化方法

梯度下降和反向传播算法是神经网络模型的主要优化算法。梯度下降算法主要用于优化单个参数的取值而反向传播算法给出了一个高效的方式在所有参数上使用梯度下降算法,从而使神经网络的损失函数尽可能的小。在这里就不具体对梯度下降算法仔细讲解了(网上资源很多),主要对深度学习神经网络优化过程做一个介绍。 对于梯...

2018-04-01 15:14:48

阅读数:27

评论数:0

按两种不同的关键字先后进行排序

在工作或学习中,可能会遇到这样一种排序情况,就是想按照两组数据按先后顺序进行排序。举个简单例子:在python中,一个字典,我想让它先按照键的大小排列,再按照值的大小排列,该怎么做呢? 这里我们举个小例子: 取一段英文“Humans don’t start their thinking fro...

2018-03-27 10:40:05

阅读数:21

评论数:0

深度学习手记(四)之线性模型

使用深度学习框架Keras和TensorFlow实现线性模型,自我感觉有点大材小用。但是,对于我们初学者来说能够拿来练练手也是不错的。其实,我们都知道神经网络如果不加激活函数就是线性的模型,所以实现线性模型,就不用加激活函数了。下面用Keras和TensorFlow框架分别实现一下线性模型。 ...

2018-03-25 11:22:23

阅读数:40

评论数:0

深度学习手记(三)之激活函数

激活函数在神经网络模型中是非常重要的一步。如果没有激活函数,那么不管神经网络有多少层,整个网络都是线性的,从而没有办法解决复杂的分类问题。 那么激活函数有哪些呢? 在维基百科上可以查到:https://en.wikipedia.org/wiki/Activation_function 在这里...

2018-03-22 13:14:32

阅读数:83

评论数:0

深度学习手记(二)之占位符Placeholder

TensorFlow是一种符号式编程,它里面有各种计算流图和变量,今天来介绍一种占位符,它的好处是可以避免生成大量常量来提供输入数据,提高了计算图的利用率。其实,今天介绍这个Placeholder占位符还有一个原因:就是使用它经常会出现下面问题: (1)ValueError: Cannot fe...

2018-03-15 09:57:41

阅读数:290

评论数:0

巧解一道阶乘排序题

今天,介绍一道在本计算机考试书上的阶乘排序(就是将一个列表长度的阶乘种的方式的排列组合输出)题。 下面我们直接看题: 在1~49中任意选择7个数,将这7个数的所有排列可能性全部输出。例如:[1,2,3]的所有输出有[2,1,3];[2,3,1];[3,2,1];[3,1,2];[1,3,2];...

2018-03-09 13:36:46

阅读数:42

评论数:0

Linux下GCC 4.9.3安装

CentOS 6默认的GCC版本是4.4.7,而很多软件都需要依赖较高版本的GCC及其库文件。在这里介绍一种方法安装GCC 4.9.3。 先在网上下载gcc $ wget http://mirrors-usa.go-parts.com/gcc/releases/gcc-4.9.3/gcc-4....

2018-02-15 22:07:31

阅读数:80

评论数:0

如何让贪婪的正则表达式变得不贪婪

正则表达式是一种模式匹配,通常被用来检索、替换那些符合某个模式(规则)的文本,非常好用,但是,有时间正则表达式很难“停”下来,因为这种模式匹配常常是贪婪的。 今天就来介绍一种让正则表达式“停”下了的方法。 line = "aabcccceebbb12345&qu...

2018-02-12 18:23:03

阅读数:50

评论数:0

Skearn预处理StandardScaler出现 ValueError 的错误

在用sklearn做机器学习的时候,我们经常要对数据进行预处理,而又经常使用标准化预处理数据,但是,使用StandardScaler有可能会出现ValueError 的错误。具体的错误如下面所示: 通过查看sklearn的帮助文档,发现:StandardScaler 能够接受 scipy.s...

2018-01-10 15:17:57

阅读数:276

评论数:0

安装freebayes所遇到的问题

今天,安装了一下用于生信软件freebayes,它用来calling SNP、haplotype的,具体的用法我们后面再探讨,今天主要谈谈在安装freebayes所遇到的问题,其实,这些问题在安装其他软件时,也会遇到。一叶便知秋!下面就具体谈谈是什么问题。 首先你得安装git模块,进行直接网上下...

2018-01-05 11:24:55

阅读数:184

评论数:0

分类模型之职员离职分析

今天要带来的是机器学习中几种重要的分类模型。分别是:逻辑回归、支持向量机、决策树、随机森林这四种算法模型。这里就不主要介绍模型背后的理论知识了,直接上数据,在数据分析中再来谈这些算法模型。 今天要讨论的是Kaggle上的公司职员离职数据集。这个数据集很有意思,因为它与生活贴近且是人们关注的事情。...

2017-12-22 10:03:38

阅读数:432

评论数:0

关于python2与python3共存问题

这个问题困扰了我很久,也是在一次偶然的机会解决了。现在就与大家分享一下,对于又想用python2又想用python3的小伙伴可以看看。 其实,这个方法也是挺简单的。我使用的是python2与anaconda3,将他们都加入环境变量。如果先加入的是python2环境变量,则系统中显示的python...

2017-11-28 09:58:39

阅读数:181

评论数:0

python中数据聚合与分组运算

在数据分析处理中,对数据进行分组并对各组应用一个函数(无论是聚合还是转换)计算分组统计或生成透视表,是数据分析工作中的重要环节。 python提供了一个灵活高效的groupby功能,它可以使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。在python中主要有两个模块(itertools...

2017-11-24 19:12:37

阅读数:236

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭