Gibbs 采样

1,Gibbs抽样:对P(z),z是向量,按照Gibbs描述的步骤,可以抽取z(1),z(2),...z(n)这n个样本,Gibbs保证这n个样本的分布服从P(z)。

 

z(0)=(z1,z2,...,zn)

Repeat

for to n

    从p(zi|z1,z2,...,zi,zi+1,...,zn)中抽取zi

得到z(t)=(z1,z2,...,zn)

 

2,上面描述了一个一般的Gibbs抽样过程,假设重复N次,将得到z(1),z(2),...,z(N)个样本。抽样有一个收敛到目标分布的过程(burn-in),假设需要a次,那么可以认为z(a),z(a+1),...,z(N)都是从P(z)中抽取出来的。Gibbs抽样中相邻两次得到的样本是相关的,因此通常每隔b次才抽样一次,来消除这种相关性。在实际中a和b通常采取预设置的方法比如几千设为a,几十或者几百设为b,因为二者没有很好的理论设置方法。

 

3,假设通过Gibbs抽样我们得到了M个服从P(z)分布的样本,可以用来做什么?

1)可以求期望:直接求样本平均即可

2)可以求函数期望:将样本做相关的函数变换得到新的样本集,求平均即可

3)直接利用样本本身,求相关的统计量

这三种操作在P(z)本身比较复杂但是p(zi|z1,z2,...,zi,zi+1,...,zn)容易求解的时候十分有用。

 

4,在LDA中我们关注三个参数z,theta和phi。其中z是语料中每一个word对应的隐变量(主题),theta是语料中每一个文档的主题分布,phi是每一个主题的term分布。其实只要求得z,其他两个可以通过简单的似然估计得到。于是需要将LDA的概率公式P(w,z,theta,phi alpha,beta)通过积分的方法把theta和phi积掉,剩下P(w,z alpha,beta)。然后求解P(z|w,alpha,beta) P(w,z alpha,beta) P(w alpha,beta),由于分母要对K的n次方个项求和因此直接求不可行(其中K是主题数,n是词汇表的长度)。Gibbs抽样就是要完成对P(z|w,alpha,beta)的抽样,利用抽样结果通过简单的似然估计求得theta和phi。

 

5,理解上述过程之后可以参考以下两个代码,理解Gibbs解LDA的具体实现

http://www.arbylon.net/projects/LdaGibbsSampler.java


Gibbs采样算法是一种马尔可夫链蒙特卡洛(MCMC)方法,用于从多维概率分布中采样。其代码如下: 1. 初始化样本:给定多维概率分布P(X₁, X₂, ..., Xₙ),随机初始化样本X₀ = (x₀₁, x₀₂, ..., x₀ₙ)。 2. 设置迭代次数和burn-in期:设定迭代次数T和burn-in期B。 3. 开始迭代:对于t = 1到T+B: 3.1 对于每个维度i = 1到n: a. 计算条件概率分布P(Xᵢ|X₁(t-1), X₂(t-1), ..., Xₙ(t-1)),即给定其他维度的采样样本情况下,当前维度的概率分布。 b. 从条件概率分布中抽样得到新的样本值xᵢ(t)。 3.2 将得到的样本X(t)加入采样结果集中,如果t > B。 4. 返回采样结果集:返回采样得到的样本集合X = {X(B+1), X(B+2), ..., X(T+B)}。 Gibbs采样算法的核心思想是通过给定其他维度的样本情况下,逐个采样每个维度的值。每个维度的采样值都是依赖于其他维度的值,通过迭代逼近真实的多维概率分布。迭代过程中的burn-in期是为了达到一个稳定的采样状态,保证得到的样本更接近于真实概率分布。 需要注意的是,具体实现时还需要考虑到条件概率分布的计算和抽样方法。对于简单的情况,条件概率分布可以直接通过概率计算得到。对于复杂的情况,可以借助数值计算方法如Metropolis-Hastings算法等来估计条件概率分布。此外,根据具体问题,还可以对采样结果进行适当的调整和优化,以提高采样效率和精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值