线性代数(10):二次型

这篇博客介绍了二次型的基本概念,包括定义、秩及其与对称矩阵的关系。通过举例说明了二次型的标准形和规范形,并阐述了合同变换下的惯性指数。此外,还详细解释了矩阵合同的概念,包括正负惯性指数的定义,以及合同矩阵的性质。内容涵盖了二次型的标准化过程及其在合同变换下的不变性。
摘要由CSDN通过智能技术生成

一、二次型

(1)定义

        含有 n 个变量 x1,x2,…… ,xn 的二次齐次函数称为二次型;

         对称矩阵 A 的秩也叫做二次型 f 的秩;

(2) 

        例:

        排列二次型   所对应的矩阵 A 为什么?该二次型的秩为什么?

         解:

(3)二次型的特殊形式

1.3.1 标准形

        只含平方项的二次型称为二次型的标准型;

        即只有正对角线含有元素的矩阵;

 1.3.2 规范形

        如果标准形的系数的值只有 0、1、-1,那么就称其为规范形;

二、矩阵合同

(1)惯性指数

        将对称矩阵通过合同变换化为对角型,对角线上的正数的个数就是正惯性指数,负数的个数就是负惯性指数。

(2)合同

        若 A 与 B 合同,记作 A ≃ B ;

        如果 A ≃ B ,那么 A 的正惯性指数等于 B 的正惯性指数,A 的负惯性指数等于 B 的负惯性指数,

(3)

        例: 

         解:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jc_caterpillar

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值