一、二次型
(1)定义
含有 n 个变量 x1,x2,…… ,xn 的二次齐次函数称为二次型;
对称矩阵 A 的秩也叫做二次型 f 的秩;
(2)
例:
排列二次型 所对应的矩阵 A 为什么?该二次型的秩为什么?
解:
(3)二次型的特殊形式
1.3.1 标准形
只含平方项的二次型称为二次型的标准型;
即只有正对角线含有元素的矩阵;
1.3.2 规范形
如果标准形的系数的值只有 0、1、-1,那么就称其为规范形;
二、矩阵合同
(1)惯性指数
将对称矩阵通过合同变换化为对角型,对角线上的正数的个数就是正惯性指数,负数的个数就是负惯性指数。
(2)合同
若 A 与 B 合同,记作 A ≃ B ;
如果 A ≃ B ,那么 A 的正惯性指数等于 B 的正惯性指数,A 的负惯性指数等于 B 的负惯性指数,
(3)
例:
解: