线性代数(1):行列式和展开式

一、行列式

(1)定义

        矩阵的行列式是线性代数的一个重要组成部分,是基于矩阵所包含的行列数据计算得到的一个标量。

        矩阵的行列式是通过正对角线数值乘积减去反对角线的数值乘积得出的;

         例:

        而在上(下)三角矩阵和只有对角线元素的矩阵中,因为存在零值所以可以通过对角线相乘计算出该行列式的的结果,由于 3 阶以上矩阵的行列式结果值计算量会比较大,所以我们通常将 3 阶以上的行列式转换成上(下)三角矩阵进行计算;

        例:

                         

这两个矩阵的结果数值皆为( a11 * a22 * a33 * a44 )

a11代表的为第一行第一列的元素,a12代表的为第一行第二列的元素。

a21代表的为第二行第一列的元素,a22代表的为第二行第二列的元素。

......   ......

(2)性质

        a. 一个行列式的转置行列式与它本身相等;

        b. 行列式的某一行(列)同时乘以 k ,相当于使用 k 乘以整个行列式;

        c. 行列式的两行(列)交换位置,整个行列式的符号发生改变;

        d. 行列式的某一行(列)的所有元素同时加(减)到另一 k 倍行(列)上,整个行列式不会发生改变;

        e. 若行列式的某一行(列)的所有元素都是两个数相加(减) ,可以将此行列式拆分为两个行列式相加(减);

二、逆序数

(1)定义

        有n个元素排列,从第1个元素开始直至最后一个元素依次对排列在前的元素进行比较,如果有比当前元素更大的值排列于该元素之前,那么这个元素数列就是一个逆序排列。

        逆序数的计算规则为所有元素的逆序个数之和,即第1个元素前的逆序元素个数记录为X1,第2个元素前的逆序元素个数记录为X2, ......   ...... 第n个元素前的逆序元素个数记录为Xn。最终该序列的逆序数的大小为 (X1 + X2 + ......   ...... + Xn )

(2)

        例:求排列 648157 的逆序数

        解: 6排在首位,X1为0;                          4前面有1个更大的元素,X2为1;

                8前面没有更大的元素,X3为0;        1前面有3个更大的元素,X4为3;

                5前面有2个更大的元素,X5为2;      7前面有1个更大的元素,X6为1;

        于是这个排列的逆序数为:

                                ( X1 + X2 + X3 + X4 + X5 + X6 ) = 0 + 1 + 0 + 3 + 2 + 1 = 7 ;

三、展开式

(1)余子式和代数余子式

        余子式:顾名思义余子式就是余下的子式,一般余子式用符号M来表示,M ij 表示将行列式中i行与j列全部删除后所余下的数据组成的行列式;

        代数余子式:一般用符号A表示,A ij 表示 在M ij 的基础上乘以pow( -1 , i+j ),即A ij = pow( -1 ,i+j ) * M ij ;

(2)展开式定义

        a. 展开定理:展开式等于它的任意一行的所有元素与他们各自代数余子式的乘积之和;( k = j 时)

                        a k1 * A k1 + a k2 * A k2 + ......   ...... + a kn * A kn ( k 为行数)

        b. 零值定理:展开式等于0; ( k ≠ j 时)

                        a k1 * A k1 + a k2 * A k2 + ......   ...... + a kn * A kn = 0 ( k 为行数)

        例1:

        解:

            例2:

解:

  • 10
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
线性代数第二版》是一本经典的线性代数教材。尽管它涵盖了众多线性代数的重要概念和理论,但是行列式是其中的一个关键内容。下面我将使用简洁的思维导图介绍一下《线性代数第二版》中关于行列式的知识点。 首先,在思维导图的中心,我们可以写下“行列式”这个概念。行列式是一个矩阵的重要性质,可以用一个标量来表示。行列式的计算可以按照一定的规则进行,其中最常见且重要的有三个:余子式、代数余子式和按行展开。 接下来,在思维导图的左侧,我们可以列出行列式的定义及其性质。行列式的定义是一个递归的过程,首先是1阶行列式为其唯一元素本身,然后是2阶行列式等于两个元素的交叉相减,以此类推。行列式的性质包括对换行性质、按列展开性质、按行展开性质等。这些性质能够帮助我们简化行列式的计算。 在思维导图的右侧,我们可以写下如何计算行列式的方法。最常用的方法是利用高斯消元法将行列式转化为上三角形矩阵,然后再进行求解。另外,我们也可以利用行列式的性质,如按行展开性质,来计算行列式的值。 最后,在思维导图的底部,我们可以列出行列式的应用领域。行列式不仅仅在线性代数中有重要的应用,还广泛应用于其他数学和工程领域。例如,在计算机图形学中,我们可以利用行列式来求解几何变换中的坐标变换等问题。 通过这个思维导图,我们可以清晰地了解到《线性代数第二版》中关于行列式的概念、性质、计算方法以及应用领域。希望这个简洁的导图能够帮助更多的人更好地理解行列式这一重要主题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jc_caterpillar

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值