***[Lintcode]Maximum Subarray Difference 最大子数组差

Given an array with integers.

Find two non-overlapping subarrays A and B, which |SUM(A) - SUM(B)| is the largest.

Return the largest difference.

Example

For [1, 2, -3, 1], return 6.

分析:求四次最大/最小子字符串。分别为从左到右计算最大/最小连续子字符串,从右至左计算最大/最小连续子字符串。原理类似于动态规划,如

leftMin[i] = Math.min(leftMin[i - 1], Math.min(nums[i] + min, nums[i])); leftMin代表0到i处(包括)连续最小子字符串和。其等于index=i-1时leftMin的值,或者包含或者不包含nums[i]的sum。

最后遍历一次计算leftMin和rightMax 或者leftMax和rightMin的绝对值的最大值。注意错位求和。

public class Solution {
    /**
     * @param nums: A list of integers
     * @return: An integer indicate the value of maximum difference between two
     *          Subarrays
     */
    public int maxDiffSubArrays(int[] nums) {
        int[] leftMin = new int[nums.length];
        int[] leftMax = new int[nums.length];
        //i向前连续n项元素的和
        int min = 0, max = 0;
        for(int i = 0; i < nums.length; i++) {
            min = Math.min(nums[i] + min, nums[i]);
            max = Math.max(nums[i] + max, nums[i]);
            if(i == 0) {
                leftMin[i] = min;
                leftMax[i] = max;
            } else {
                leftMin[i] = Math.min(leftMin[i - 1], min);
                leftMax[i] = Math.max(leftMax[i - 1], max);
            }
        }
        int res = 0, endMin = 0, endMax = 0;
        min = 0;max = 0;
        for(int i = nums.length - 1; i > 0; i--) {
            min = Math.min(nums[i] + min, nums[i]);
            max = Math.max(nums[i] + max, nums[i]);
            if(i == nums.length - 1) {
                endMin = min;
                endMax = max;
            } else {
                endMin = Math.min(endMin, min);
                endMax = Math.max(endMax, max);
            }
            res = Math.max(Math.max(Math.abs(leftMax[i-1]-endMin),   
                Math.abs(endMax - leftMin[i-1])), res);  
        }
        return res;
    }

}



基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业
### 使用分治法解决最大子数组求和问题 #### 算法概述 最大子数组求和问题是寻找一维数组中的连续子数组,使得该子数组的元素之和达到最大值。通过分治法可以有效地解决问题。其核心思想是将原问题分解为更小的子问题,并逐步合并这些子问题的结果来得到最终解。 对于给定的一维数组 `arr`,可以通过以下方法将其划分为三个部分: 1. **跨越中间的最大子数组**:即包含左半部分最后一个元素以及右半部分第一个元素的最大子数组。 2. **左侧的最大子数组**:仅考虑数组左边部分的最大子数组。 3. **右侧的最大子数组**:仅考虑数组右边部分的最大子数组。 最后比较这三个部分的最大值即可得出整个数组的最大子数组和[^1]。 --- #### 算法实现细节 以下是具体实现步骤: 1. 将数组分成两半并分别递归计算左右两侧的最大子数组和。 2. 计算跨越中间位置的最大子数组和。 3. 取上述三者的最大值作为当前区间的最大子数组和。 为了高效地找到跨越中间的最大子数组和,可以从中间向两端扩展,分别记录从中间往左的最大累加和与从中间往右的最大累加和。 --- #### Python 实现代码 下面是基于分治法的最大子数组求和问题的具体实现: ```python def find_max_crossing_subarray(arr, low, mid, high): # 找到跨过中点的最大子数组(左侧) left_sum = float('-inf') sum_ = 0 max_left = mid for i in range(mid, low - 1, -1): # 从mid向low方向遍历 sum_ += arr[i] if sum_ > left_sum: left_sum = sum_ max_left = i # 找到跨过中点的最大子数组(右侧) right_sum = float('-inf') sum_ = 0 max_right = mid + 1 for j in range(mid + 1, high + 1): # 从mid+1向high方向遍历 sum_ += arr[j] if sum_ > right_sum: right_sum = sum_ max_right = j return (max_left, max_right, left_sum + right_sum) def find_maximum_subarray(arr, low, high): if high == low: # 基本情况:只有一个元素 return (low, high, arr[low]) mid = (low + high) // 2 # 左侧最大子数组 left_low, left_high, left_sum = find_maximum_subarray(arr, low, mid) # 右侧最大子数组 right_low, right_high, right_sum = find_maximum_subarray(arr, mid + 1, high) # 跨越中间的最大子数组 cross_low, cross_high, cross_sum = find_max_crossing_subarray(arr, low, mid, high) if left_sum >= right_sum and left_sum >= cross_sum: return (left_low, left_high, left_sum) elif right_sum >= left_sum and right_sum >= cross_sum: return (right_low, right_high, right_sum) else: return (cross_low, cross_high, cross_sum) # 测试函数 if __name__ == "__main__": test_array = [-2, 1, -3, 4, -1, 2, 1, -5, 4] result = find_maximum_subarray(test_array, 0, len(test_array) - 1) print(f"最大子数组范围: {result[:2]}, 和: {result[2]}") ``` --- #### 复杂度分析 - 时间复杂度:由于每次都将数组分割为两个子数组,并且需要线性时间 O(n) 来查找跨越中间的最大子数组,因此总的时间复杂度为 \(O(n \log n)\)。 - 空间复杂度:递归调用栈的空间需求决定了空间复杂度为 \(O(\log n)\),其中 \(n\) 是输入数组长度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值