Maximum Subarray(最大子序列和)

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

1.思路:初始化dp[0] = nums[0],dp[i] = max{dp[i] + nums[i] , nums[i]}, max(dp[i])即为所求。但为了节省空间,可使用空间复杂度为O(1)的解法。

时间复杂度O(N),空间复杂度O(1)解法:以maxsum记录当前以nums[i]结尾的最大序列和,并更新总的最大子序列和ans.

    int maxSubArray(vector<int>& nums) {
        int ans = nums[0];
        int maxsum = nums[0];
        for(int i = 1; i < nums.size(); i++){            
            maxsum = maxsum + nums[i] > nums[i] ? maxsum + nums[i] : nums[i];
            ans = maxsum > ans ? maxsum : ans;
        }
        return ans;
    }

2.分治递归。(Divide and Conquer)

最大子序列无非出现在三个位置:左边、右边、中间

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HUST_Miao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值