样本容量本身的计算公式。
这个标准正态分布的临界值
n=Z方(/2) 总体方差 /可接受的边际误差。
求出来就是最小能够接受的样本容量。
标准正态分布的边界值z可以查询标准 正态分布表得到
抽样分布部分知识点
回顾:统计抽样基本概念
总体由研究对象的全体所组成。
样本是总体中的部分元素所组成的集合。
目标总体是我们要推断的总体
抽样总体是实际抽取样本的总体
在抽样之前,应将总体划分为抽样单位。抽样单位既可以是
一个简单的个体,也可以是一组个体。
对某一个特殊研究,抽样单位的名册称为抽样框。
一、简单随机抽样
我们主要考虑这些
1、总体均值
2、总体比率
3、样本容量的确定
如果选择大样本(n≥30),则中心极限定理可以保证的抽样分布
近似服从正态概率分布,μ 的区间估计为:
其中
总体比率的区间估计
而在随机抽样当中
标准差要进行修正。
这里有一点点不一样啊。
二、分层随机抽样
三、整群抽样
例如,我们想调查某省的登记选民。则有两种方法:
整群抽样与分层抽样的比较:
分层抽样和整群抽样都将总体划分为组,因此这两种抽样过程感觉
上是相似的。
• 当群内的个体存在差异时,整群抽样可提供较好的结果。
选择整群抽样与分层抽样的原因是不同的。
• 理想情形是每一群是整个总体的一个缩影,这时,抽取很少的群就
可以提供关于整个总体特征的信息。
四、系统抽样
例如,需要从容量为5000的总体中抽取一个容量为50的样本,我们
可以从总体中随机选择一个,然后在其后面的抽样框中,每隔100个个体
选择一个,可得到样本中其余的个体。
因为第一个个体的选择是随机的,因此系统样本常常假定具有简单随
机样本的性质。当抽样框是由总体中的个体随机排列而形成时,这种假定
通常是合适的。