jupyter notebook的安装及插件推荐

本文介绍了如何安装Jupyter Notebook及其插件,并提供了在不同IDE中集成Jupyter Notebook的方法。Jupyter Notebook支持多种编程语言,如Python、Java、C等,并且能够与Visual Studio Code、PyCharm等IDE高度集成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

jupyter notebook 提供了一种学习、研究模式下的编程体验,“notebook”一词用的也非常贴切,用markdown将文字和代码简洁完美地整合到了一起,让编程脱离了“project”的工程化禁锢,却又不会像“snippet”那么杂乱。jupyter notebook从python语言开始,陆续支持了Java、C、R、JavaScript、Kotlin、Scala甚至是Mathematica。同时jupyter notebook也获得了visual studio code、JetBrains PyCharm、JetBrains DataSpell等IDE的高度集成。

本文就简单介绍jupyter notebook的安装、常用插件推荐。

一、安装jupyter notebook

jupyter notebook可以运行在所有支持Python的操作系统中,包括Microsoft Windows、Apple macOS、Linux等。但开始之前必须确认Python(Python2.7,或Python3.3以上)及Python包管理工具Anaconda和pip应该安装完毕。其中pip中包含了Python常用的软件包,而Anaconda中包含了常用的科学计算和数据科学软件包,这里推荐两个都安装,因为有一些软件包pip中有,但Anaconda中没有;而另一些则刚好相反,但是同时安装了pip和Anaconda则基本上就不缺了。

具备了上述先决条件,便可以通过以下命令行安装jupyter notebook:

Anaconda条件下:

由于Anaconda中自带了jupyter notebook,所以你什么都不用做,直接进入下一节启动jupyter notebook即可。

Python3、pip条件下:

python3 -m pip install --upgrade pip
pi3 install jupyter

Python2、pip条件下:
 

python2 -m pip install --upgrade pip
pip2 install jupyter

完成jupyter notebook的安装后,你可以在CMD、PowerShell(Microsoft Windows)或Terminal(macOS、Linux)中愉快地敲入:

jupyter notebook

启动jupyter notebook网页终端。

二、安装jupyter notebook插件

jupyter notebook支持大量的第三方插件,以帮助用户提升使用体验,其中不乏极具创意的生产力工具,以下就是一些比较有用的一些插件。

主题管理工具 “jupyterthemes”

jupyter notebook原生主题平平淡淡的,如果需要更好的效果就需要修改样式文件,做起来十分麻烦,这时候你就可以安装这个“jupyterthemes”,它给你带来许多不同的炫酷主题。

pip install jupyterthemes

安装完毕之后,可以用命令以下命令来更换主题,当然必须通过命令来更换是美中不足的地方啦。

# 显示可用的主题
$ jt -l

Available Themes: 
   chesterish
   grade3
   gruvboxd
   gruvboxl
   monokai
   oceans16
   onedork
   solarizedd
   solarizedl

# 选择主题
$ jt -t grade3

# 修改主题的字体与字号
$ jt -t oceans16 -f fira -fs 13

插件管理工具 “nbextension”

jupyter notebook默认情况下缺少可视化的插件管理工具,nbextension则在jupyter notebook ui中提供了一个可视化的插件管理工具。

先使用pip安装nbextension:

pip install jupyter_contrib_nbextensions

然后将插件工具栏添加到jupyter notebook页面中:

jupyter contrib nbextension install

安装完成后,你的jupyter notebook页面就会出现以下部分。

有了nbextension之后,你就可以一个一个尝试jupyter notebook插件了。这里主要推荐下列几个插件:

更好地写代码

1、代码自动补全插件 Hinterland 

2、代码格式化插件 Code prettify

3、代码折叠插件 Codefolding

4、代码执行时间插件 Execute Time

5、输出内容折叠插件 ScrollDown

更好的分析数据

1、窗口分割 Scratchpad

更好的做笔记

1、Markdown内容高亮 Highlighter

2、Markdown内容目录 Table of Contents

3、Markdown内容折叠 Collapsible headings

三、在IDE中集成jupyter notebook

JetBrains DataSpell、PyCharm环境

PyCharm无需安装任何插件即可支持jupyter notebook,在项目中创建jupyter notebook笔记本;而应用于数据分析的DataSpell更是完全基于jupyter notebook。因此在需要编写大量代码的情况下,可以考虑通过PyCharm或DataSpell来管理你的项目,同时通过jupyter notebook笔记本将项目中的成果表达出来。

 PyCharm、DataSpell可以通过IDE内置jupyter服务或外部jupyter服务来运行jupyter notebook代码,对于个人来说直接使用内置服务器则省掉上面的安装过程,而对于团队来说,通过配置使用统一的jupyter服务则可以更好共享配置。

 Visual Studio Code环境

VS Code环境下则需要安装Jupyter插件,以支持jupyter notebook。

### 如何在 Jupyter Notebook安装和管理插件 #### 插件的作用与环境准备 Jupyter Notebook 提供了一种交互式的编程方式,通过安装各种插件可以增强其功能[^5]。为了确保顺利安装并使用这些插件,建议先确认当前使用的 Python 环境以及 Jupyter Notebook 的版本。 对于较新的 Jupyter Notebook (7.x),部分旧版插件可能无法兼容,因此推荐尝试官方内置的功能替代方案[^2]。 #### 安装特定版本的 Jupyter Notebook 和所需依赖项 如果确实需要某些不支持最新版本的插件,则可以通过指定较低版本来解决问题: ```bash pip install -U "notebook==5.0" -i https://pypi.tuna.tsinghua.edu.cn/simple/ ``` 此命令将把 `notebook` 包更新到 5.0 版本,并从清华大学镜像源获取资源以加快下载速度[^3]。 #### 使用 Conda 进行更稳定的包管理和插件安装 考虑到不同库之间的潜在冲突问题,采用 Anaconda 或 Miniconda 来构建独立的工作区是一个不错的选择。下面是如何利用 conda 工具链完成整个过程的例子: ```bash conda create --name my_jupyter_env python=3.8 conda activate my_jupyter_env conda install -c conda-forge jupyter_contrib_nbextensions jupyter contrib nbextension install --user conda install -c conda-forge jupyter_nbextensions_configurator jupyter nbextensions_configurator enable --user ``` 上述脚本首先创建了一个名为 `my_jupyter_env` 的新虚拟环境,并指定了 Python 解释器的具体版本;接着依次安装了必要的扩展组件及其配置工具。 #### 启动服务后的初步验证 当一切设置完毕之后,在终端执行如下指令启动服务器: ```bash jupyter notebook ``` 正常情况下应该能够看到浏览器自动跳转至本地运行的服务页面,此时可通过界面上新增加的选项卡访问已启用的各种实用小部件[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值