- 博客(1083)
- 收藏
- 关注
原创 GraphRAG遇上DeepResearch:有趣的FusionGraphRAG项目推介
推荐一个比较有趣的项目,https://github.com/1517005260/graph-rag-agent,目标是做**可解释、可推理的一种问答结合**。
2025-06-21 20:07:13
361
原创 MRAgent:一种基于大模型的自动化医疗智能体,用于通过孟德尔随机化发现疾病中的因果知识
在医学研究中理解因果关系对于开发有效的干预措施和诊断工具至关重要。孟德尔随机化(MR)是一种通过遗传数据推断因果关系的关键方法。然而,MR分析通常需要预先从临床经验或文献中识别暴露-结果对,这可能难以获得。这给调查特定疾病因果因素的临床医生带来了困难。为解决这一问题,我们推出了MRAgent,这是一种创新的自动化代理,利用大型语言模型(LLMs)来增强疾病研究中的因果知识发现。MRAgent自主扫描科学文献,发现潜在的暴露-结果对,并使用大量的全基因组关联研究数据进行MR因果推断。我们进行了自动化和人类评估
2025-06-21 20:06:19
365
原创 大模型应用技术微专业2024年招生简章
为满足各行业对人工智能(AI)技术的迫切需求,大模型应用技术微专业服务上海及长三角并辐射全国,培养掌握大模型基础理论知识和前沿应用技术,能够从事AI影视动画辅助设计与生成式创作、以及AI游戏开发辅助设计与交互代码生成的应用型人才。
2025-06-20 22:53:04
434
原创 AI大模型有哪些常见的分类?
随着春节期间DeepSeek的爆火,AI大模型再一次引起大家的关注。除了DeepSeek外,还有很多其他的大模型,如OpenAI、Gemini、Kimi、豆包等,它们能写文章、画图、写代码,甚至能帮你策划旅行。那这些眼花缭乱的大模型有哪些分类呢?我们根据行业和应用范围大致可以分为四类:
2025-06-20 22:51:38
488
原创 以AI使用数据为目标的数据管理与传统数据管理的差异
以AI 使用数据为目标,辅以人类数据管理员的数据管理,与传统数据管理体系在理念、目标、方法、组织方式、技术架构等方面存在显著差异。
2025-06-19 20:31:37
751
原创 大数据通识:数据治理的基本概念
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
2025-06-19 20:30:42
806
原创 边画边想!多模态Reasoning迎来巨大提升!
想象你要在宜家迷宫般的仓库里找货架,人类会边看地图边比划路线,但当前的视觉语言模型(LVLM)只会用文字描述:“左转,右转...”——结果原地打转!论文犀利指出:**文本无法精准表达空间关系**。例如物体移动轨迹在文字中会变成“从A到B再到C”的模糊描述,而实际需要精确到像素级的坐标变化。
2025-06-19 20:29:38
634
原创 中国升值最快的4大专业,工资高待遇好,就业完全不用愁!
看看最新就业数据,2025届高校毕业生就业形势比往年更严峻,大量专业的毕业生不得不降低薪资期望才能拿到offer。但我发现, **有几个小众专业依然一枝独秀,就业率甚至能达到100%** !这些专业到底是什么来头?赶紧跟着张老师一起看看!
2025-06-19 20:28:48
590
原创 Nature Cancer发表医学AI多模态模型,整合临床、基因、影像以及病理数据,探索跨模态信息融合方法
这篇文章聚焦高级别浆液性卵巢癌(HGSOC)的多模态数据整合与风险分层,针对当前临床预后模型对患者结局异质性解释不足的问题,探索了基于机器学习的跨模态信息融合方法。
2025-06-18 20:08:38
870
原创 论文浅尝 | 基于知识引导的检索增强生成,实现大型语言模型的深度与忠实推理(ICLR2025)
在自然语言处理领域,大型语言模型(LLMs)在开放域问答等任务中表现出色,但当任务扩展到需要从多个文档中提取和整合信息的复杂知识推理任务时,现有方法面临新的挑战。传统的检索增强生成(RAG)方法主要依赖于文本内容的语义相似性检索,虽然能够捕捉文本间的表面关联,但难以挖掘深层次的结构化关系。此外,基于知识图谱(KG)的RAG方法虽然能够提供结构化的知识,但受限于知识图谱本身的不完整性和信息匮乏。知识图谱通常缺乏实体的详细上下文信息,难以支持复杂的推理任务。
2025-06-18 20:07:09
797
原创 推理模型(Reasoning Model)与普通 LLM 有何区别?
Reasoning Model,或者叫推理模型,大概是从OpenAI 的 o1-preview 模型[1](2024-09-12)开始广泛受到关注的。OpenAI 在博客中明确指出了这种模型与传统 LLM 的主要区别:
2025-06-18 20:05:17
735
原创 顶刊GRSM | 北大北邮团队提出GeoPix, 面向遥感像素级图像理解的多模态大语言模型, 数据代码模型开源
之前遥感MLLM主要支持图像级(IC/VQA)和区域级(visual grounding)任务,而**GeoPix支持像素级实例分割对话**(Referring Segmentation & Multi-Referring Segmentation)
2025-06-17 21:00:57
780
原创 多模态RAG
MRAG系统需要对多模态文档进行解析和索引。这包括**提取文本内容(使用OCR或特定格式的解析技术从多模态文档中提取文本内容)、检测文档布局并将其分割成结构化元素(如标题、段落、图像、视频等)
2025-06-17 20:59:48
1003
原创 Qwen3 Reranker模型Lora微调实战
今天来介绍一下如何微调Qwen3 Reranker。这样Qwen3的Embeding ,Ranker 都能够定制化了。
2025-06-16 21:34:32
962
原创 多模态大一统新架构!字节提出Ming-Omni!融合图像,文本,语音三模态!多模态任务一网打尽
人类能够轻松地整合视觉和听觉线索来表达想法,并根据描述生成生动的心理意象,支持创造力、解决问题和交流,这些是智能的核心方面。通用人工智能(AGI)的最终目标是模仿这种类人多模态智能形式,逐渐从工具演变成一个能够增强和解放人类生产力的高性能智能体。最近大语言模型(LLMs)的进展,加上在大量多模态数据集上的广泛训练,已经催化了视觉和音频方面强大感知能力的出现,以及这两种范式中的生成能力。然而,如何在单个理解模型中有效地融合这两种模态仍然具有挑战性。除了理解任务之外,另一个关键障碍是将强大的生成能力集成到这些模
2025-06-16 21:32:14
860
原创 数据标注优秀案例集之三十七 | 中医药行业大模型数据标注
中医药行业存在数据模态多样、标注标准不统一、效率低等痛点。本项目从流程上定义了行业数据标注范式,构建采集、分类、翻译、标注等全流程管理体系;技术上融合Graph RAG,通过CV与LLM进行数据合成,实现了多模态数据应用;成效上构建了中药材质检、诊疗、营销等高质量数据集及应用,标注效率提升30倍,中药材质检效率提高50%,退换货成本降低1000万/年、营销复购率增长1000万。
2025-06-16 21:24:19
936
原创 突破多模态图像翻译难题:ABS-Mamba借SAM2、CNN、Mamba及LoRA+微调创佳绩 !
精确的多模态医学图像翻译需要协调全局解剖语义和局部结构保真度,这一挑战因跨模态信息丢失和结构扭曲而复杂化。作者提出了ABS-Mamba,一种集成Segment Anything Model 2(SAM2)进行器官感知语义表示、专门卷积神经网络(CNN)保留模态特定边缘和纹理细节,以及Mamba选择性状态空间建模以高效处理长距离和短距离特征依赖的新型架构。
2025-06-15 10:45:00
755
原创 Nature:多模态大模型LLMs如何驱动多组学与生命科学研究新范式?
高通量组学技术的快速进步引发了生物数据的爆炸式增长,远超当前对分子层面规律的解析能力。**在自然语言处理领域,大语言模型(LLMs)通过整合海量数据构建统一模型,已显现突破数据困境的潜力。
2025-06-14 10:45:00
748
原创 让浏览器拥有思考力:LLM+Playwright实现自主行动的智能助手
你是否曾梦想过拥有一个浏览器助手,它能理解你的意图,自主规划任务,像真人一样操作网页?本文将分享如何结合大型语言模型(LLM)和浏览器自动化工具(Playwright MCP)构建一个能自主思考、自主行动的浏览器智能体系统。
2025-06-13 23:07:00
584
原创 GraphRAG太慢LightRAG延迟高?华东师大新方法一招破解双重难题
GraphRAG的索引速度慢,LightRAG的查询延迟高?这些影响效率的难题,现在终于迎来改进——由华东师范大学李翔老师带领的的Planing Lab团队推出高效解决方法E²GraphRAG。
2025-06-13 23:04:47
735
原创 复旦联合上海AI Lab提出UNIFIEDREWARD - THINK!首个基于统一多模态思维链的奖励模型!
近年来,多模态奖励模型(RMs)在使视觉模型输出与人类偏好保持一致方面表现出色,为指导模型训练和推理提供了关键的奖励信号。传统的奖励模型通常通过监督微调(SFT)在大规模人工标注的偏好数据上进行训练。在测试时,大多数方法直接为视觉模型输出分配分数或进行成对排名,依赖于从训练数据中获得的知识和直觉。虽然这些方法有效,但往往缺乏可解释性,这使得用户难以理解所分配分数或排名背后的潜在推理过程。
2025-06-12 21:25:05
573
原创 75页哈工大多模态推理大模型最新综述:感知、推理、思考与规划
推理是智能的核心,它塑造了决策、得出结论以及在不同领域进行泛化的能力,**大语言多模态推理模型(LMRMs**)作为一种有前景的范式应运而生,提出了一个全面且结构化的多模态推理研究综述,围绕一个四阶段的发展路线图展开:
2025-06-12 21:24:15
609
原创 向量数据库对比:优缺点、适用场景与案例分析
向量数据库(Vector Database)是专门为存储、索引和管理高维向量数据设计的数据库,广泛应用于人工智能(AI)、机器学习(ML)和大数据分析场景。随着非结构化数据(如图像、文本、音频等)的爆炸式增长,向量数据库通过将这些数据转化为向量嵌入(embeddings),并支持高效的相似性搜索,成为AI应用(如RAG、推荐系统、语义搜索等)的核心基础设施。本文将对比当前流行的向量数据库,包括嵌入式向量数据库(如ChromaDB、LanceDB),分析其优缺点、适用场景,并提供实际案例。
2025-06-12 21:22:27
988
原创 如何让AI听懂你!一文搞懂大模型提示词
我们都知道,AI能够在理解和生成语言方面做得很好。但是,如何让机器理解我们的需求,给出正确的回答呢?这就需要用到--提示词(prompt)。
2025-06-11 20:02:30
835
原创 OCRBench v2:多模态大模型的“识图+读字+推理”能力全面检测
近年来,多模态大模型如GPT-4V、Gemini、Claude 3系迅猛崛起,不仅能“看图说话”,还能“带图推理”。它们正试图接管搜索、阅读理解、甚至图文混合场景下的工作流。但问题是:
2025-06-11 20:00:05
418
原创 大模型也开始玩儿建模?“数学智慧”正在被 ModelingAgent 重新定义
大语言模型近年来在数学推理、逻辑问答、甚至复杂证明任务中屡创佳绩。然而,这种“解题”能力距离真正的“现实问题解决力”仍有显著鸿沟。一个具备实际智能的系统,不能只是完成符号运算,更需要具备将模糊语言转化为结构化建模任务的能力——**这正是人类科学、工程、政策决策中最核心的认知过程之一**。
2025-06-11 19:59:02
716
原创 一篇LLM × DATA技术最新系统性综述
上交大&清华&阿里&上海AI Lab**联合发表了一篇关于大型语言模型(**LLM**)与数据管理(**DATA**)相互作用的综述性研究,全面探讨了两者之间的双向关系,即数据管理对LLM的支撑作用(**DATA4LLM**)以及LLM在数据管理中的应用(**LLM4DATA**)。
2025-06-11 19:58:02
913
原创 解密AI Agent如何让银行营销转化率提升40%
过去五年间,我们作为金融科技项目的技术顾问,亲眼目睹了中国银行业的数字化转型之路。传统银行营销正在面临前所未有的挑战:获客成本不断攀升,客户忠诚度日益降低,而同质化服务使差异化竞争变得极为困难。在这一背景下,AI Agent作为新一代智能营销工具,正逐渐成为各大银行的战略选择。
2025-06-10 20:32:22
599
原创 理解 RAG 第一部分:为什么需要它
自然语言处理(NLP) 是人工智能**(AI)的一个领域,旨在教会计算机理解人类的书面和口头语言,并运用这些语言与人类互动。虽然传统的 NLP 方法已研究数十年,但近年来出现的**大型语言模型**(LLM) 几乎主导了该领域的所有发展。LLM 通过将复杂的深度学习架构与能够分析语言中复杂模式和相互依赖关系的自注意力机制相结合,彻底改变了 NLP 和整个人工智能领域。LLM 能够处理广泛的语言生成和语言理解任务,并具有广泛的应用范围,例如对话聊天机器人、深度文档分析、翻译等等。
2025-06-10 20:31:06
960
原创 本周大模型新动向:知识蒸馏、超强智能体、推理行为分化
近期的研究结果表明,使用大规模的远程操作机器人演示数据集可以训练基于Transformer的模型,这些模型有潜力泛化到新的场景、机器人和任务中。然而,整理、分发和加载包含视频、文本和数值模态(包括多个摄像头的流)的大型机器人轨迹数据集仍然具有挑战性。本文提出了Robo-DM,这是一个高效的开源云基数据管理工具包,用于收集、共享和学习机器人数据。Robo-DM使用可扩展二进制元语言(EBML)将机器人数据集以自包含格式存储,与OXE数据集使用的RLDS格式相比,Robo-DM的压缩可以节省高达70倍(有损)和
2025-06-10 20:30:20
797
原创 大模型算子搞不懂?我直接给你讲透...
此篇,我将以 Qwen2.5-32B 大语言模型为例,将大语言模型的所有算子梳理一遍,并描述大模型推理的整个过程。
2025-06-10 20:27:52
749
原创 “一代更比一代强”:现代 RAG 架构的演进之路
基于 RAG(检索增强生成)的 AI 系统,过去是,现在仍然是企业利用大语言模型(LLM)的最有价值的应用之一。我记得差不多两年前我写了第一篇关于 RAG 的文章,那时候这个术语还未被广泛采用。
2025-06-09 21:03:44
579
原创 Qwen3开源最新Embedding模型
Qwen3-Embedding 是构建于 Qwen3 基础模型上的新一代文本嵌入与重排序模型系列,显著提升了多语言理解、代码检索与复杂指令任务中的表现。该系列模型覆盖三个参数规模(0.6B、4B、8B),并通过多阶段训练策略,结合大规模弱监督合成数据、有监督微调与模型融合,最终在多个基准测试中取得了当前最优性能。
2025-06-09 21:01:57
725
原创 多模态模型挑战北京杭州地铁图!o3成绩显著,但跟人类有差距
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
2025-06-09 21:01:04
778
原创 145K Star震撼!HuggingFace这个AI神器让50万+模型触手可及!
AI模型太多不知道怎么选?从GPT到BERT,从图像分类到语音识别,海量AI模型让人眼花缭乱。部署调用更是门槛重重。
2025-06-09 20:58:53
871
原创 模型压缩到70%,还能保持100%准确率,无损压缩框架DFloat11来了
大型语言模型(LLMs)在广泛的自然语言处理(NLP)任务中展现出了卓越的能力。然而,它们迅速增长的规模给高效部署和推理带来了巨大障碍,特别是在计算或内存资源有限的环境中。
2025-06-08 10:45:00
1051
原创 一文吃透 RAG:7大核心概念,通俗易懂
未来,每个产品经理都是 AI 产品经理,而每个 AI 产品经理都必须懂 RAG。所谓RAG(Retrieval - Augmented Generation),即信息检索(Retrieval)+内容生成(Generation)。
2025-06-07 19:41:58
1007
原创 RAG应用必备!10种向量数据库全解析、Weaviate、Milvus、pgvector、Qdrant等热门工具谁更强?
在构建能够理解和生成自然语言的智能应用时,大型语言模型(LLMs)展现出了强大的能力。然而,这些模型通常依赖于训练时所拥有的知识,对于特定领域或最新信息的掌握可能存在不足。为了弥补这一缺陷,检索增强生成(RAG)技术应运而生。
2025-06-07 19:40:44
555
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人