Python是一门可以追溯到20世纪80年代的“古老语言”,历久弥新,一开始从配角开始,自觉做好“胶水语言”(glue language)的角色。历经40年的发展、3个大版本的更迭,在各大软硬件平台、技术领域都有了广泛的应用。在如今的AI时代里,Python在人工智能、机器学习、大数据等科研领域的广泛生态更是使其有了稳定的用户根基,终于在2021年10月首次登顶TIOBE排行榜,从此稳居各大编程语言排行榜榜首,成为名副其实的“第一编程语言”。
Python的简史
Python前身是1980 年代后期,Guido van Rossum 在荷兰的 CWI(Centrum Wiskunde & Informatica) 研究所时所开发的“ABC 语言”。Guido带着“简单、易读、功能强大”的目标设计了“ABC语言”,经过一段时间的实践,“ABC语言”基本实现了“简单、易读”的目标,但也暴露出了“不够灵活”的问题。于是1989 年圣诞节期间,Guido带着“简洁、高效、可读性强且功能强大”的目标开始设计Python,简单地说就是要有C/C++语言的强大功能和Shell 脚本的易用性。
Python 0.9.0
1991 年 2 月,Guido 首次公开发布了 Python 0.9.0。该版本实现了模块、函数、异常处理等基本特性,同时还初步具有面向对象编程(OOP)的能力,这一点在“面向对象”的软件开发大势所趋的背景下非常重要。
Python 1.0
1994 年 1 月,Python 1.0发布,并陆续加入了 map()、filter()、reduce()、lambda 等函数式编程特性。在随后的几年时间里,Python完成了 Unix、Linux、Windows、Mac OS等主流平台的移植,使得Python既可以作为C/C++的辅助语言以提供程序的灵活性,也可以作为Shell 脚本的扩展以增强其功能。
Python 2.0
2000年10月,Python 2.0发布,这个版本增加了实现完整的垃圾回收功能,并提供了对Unicode的支持。同时,Python生态社区也得以壮大,并于次年成立了PSF(Python Software Foundation),极大促进了Python语言的开发和推广。
Python 3.0
2008年12月,Python 3.0发布,这是Python历史上的一个重要里程碑,它解决了Python早期版本中的一些设计缺陷,摒弃了一些不规范的语法。但Python 3破坏了向后兼容性,这导致了许多开发者和组织在迁移到Python 3上犹豫不决。然而从整体上来看,Python 3的强势升级为Python后续的大发展奠定了基础。
Python有哪些优势
Python 作为一门高效、易学、跨平台、应用广泛的编程语言,在多个层面上展现出强大的优势。
学习层面
Python 以 简洁易用 著称,其语法设计接近自然语言,降低了初学者的学习门槛。同时,它对 面向对象编程(OOP)、函数式编程(Functional Programming) 和 过程式编程(Procedural Programming) 这三种主要编程范式的良好支持,使其学习曲线平顺且深远。从零基础的编程爱好者到资深开发者,都能根据自己的需求和编程经验选择合适的编程方式,逐步深入。
此外,Python 具有 交互式解释器(REPL),可以直接运行代码并即时查看结果,有助于学习者快速理解编程概念和调试代码。同时,大量的免费学习资源、官方文档、开源项目以及社区论坛(如 Stack Overflow、GitHub、Python 官方文档)也为学习者提供了丰富的支持。
开发层面
Python 是 跨平台的语言,可以在 Windows、Linux、macOS 等主流桌面操作系统上流畅运行。此外,它还能运行在 嵌入式系统(如 Raspberry Pi、STM32、ESP32、BeagleBone Black 等),具备极强的可移植性。这种特性使得 Python 成为从桌面应用到物联网(IoT)设备开发的理想选择。
在软件开发过程中,Python 提供了 动态类型(Dynamic Typing) 和 自动内存管理(Garbage Collection),避免了低级语言中常见的繁琐类型声明和手动内存管理问题,提高了开发效率。借助 强大的标准库 和 丰富的第三方库生态,开发者可以快速构建功能强大的应用程序,而无需从零开始编写大量代码。
Python 还支持 模块化编程,开发者可以使用模块和包组织代码,提高代码复用性,增强可维护性。此外,Python 兼容 C、C++、Java,可以与这些语言的代码进行交互,进一步提升其扩展性和性能。
应用层面
Python 在多个领域均有广泛应用,涵盖从 Web 开发 到 人工智能 的各种技术方向:
• 数据分析与科学计算:Python 具有强大的数据处理能力,得益于 numpy、pandas、matplotlib 等库的支持,能够轻松进行数据分析、可视化和统计计算。
• 机器学习与人工智能:tensorflow、pytorch、scikit-learn 等库使得 Python 成为 AI 领域的主流编程语言,广泛用于深度学习、计算机视觉和自然语言处理。
• Web 开发:Python 通过 flask、django 等框架,能够快速构建高效、安全的 Web 应用,并支持 RESTful API 开发。
• 自动化运维与脚本编写:运维人员和 DevOps 工程师可以使用 Python 编写自动化脚本,进行服务器管理、日志分析、批量任务执行等工作。
• 网络爬虫:得益于 requests、scrapy 等库的支持,Python 可以轻松编写高效的爬虫程序,抓取和分析网页数据。
• 金融科技:Python 在高频交易、量化分析、金融数据建模等方面也有广泛应用,quantlib、pandas 等库支持金融计算和市场分析。
• 游戏开发:pygame 等库可以用于 2D 游戏开发,而 unity 也支持 Python 进行游戏脚本编写。
• 嵌入式开发与物联网(IoT):Python 可用于嵌入式系统开发,支持 Raspberry Pi 等硬件平台,广泛用于智能家居、机器人等领域。
社区层面
Python 拥有 全球最大的开发者社区之一,其开源生态系统极其活跃,确保了 Python 持续更新和完善。Python 社区的主要特点包括:
• 丰富的开源资源:GitHub、PyPI(Python Package Index)上有大量的开源项目和第三方库,可以直接使用或作为学习参考。
• 活跃的技术支持:开发者可以通过 Stack Overflow、Reddit、Python 官方论坛 等渠道寻求帮助,社区成员会积极解答各种问题。
• 官方文档和教程:Python 官方提供了详细的文档,并且有大量免费的学习教程、MOOC 课程(如 Coursera、Udacity)供学习者使用。
• 全球性大会和活动:每年都会举办 PyCon(Python Conference)等全球性 Python 会议,推动 Python 语言的创新和发展。
• 多样化的贡献方式:无论是新手还是资深开发者,都可以通过贡献代码、撰写文档、回答问题等方式参与 Python 生态的建设。
产业层面
Python 在全球各大公司、机构和行业中得到了广泛采用,包括:
• 科技巨头:Google、Facebook、Netflix、Microsoft、Amazon、IBM、Tesla 都在使用 Python 进行数据分析、AI 研究和 Web 开发。
• 金融行业:银行和量化交易公司(如高盛、摩根大通)使用 Python 进行金融建模、算法交易、数据分析。
• 医疗与生物信息:Python 在基因组学、药物研发、医学影像分析中被广泛应用(如 Biopython)。
• 政府与科研:NASA、CERN、MIT 等机构使用 Python 进行科学计算和仿真分析。
• 游戏与娱乐:Python 在游戏开发(如 pygame)和 3D 建模(如 Blender 的 bpy 模块)中发挥重要作用。
Python与其他语言的比较
尽管 Python 具有 易学易用、跨平台、生态丰富 等诸多优势,但它也存在一些明显的缺点,使其在某些领域的适用性受限。下面是Python与其他主流语言的对比,以帮助更好地使用Python。
Python vs C/C++
对比点 | Python | C/C++ | |
---|---|---|---|
语法 | 简洁,接近自然语言,易读易写 | 语法复杂,需要手动管理内存 | |
学习难度 | 低,适合初学者 | 高,适合有编程基础的人 | |
执行速度 | 慢,解释执行(可用 JIT/Cython 加速) | 快,编译执行,适合高性能计算 | |
内存管理 | 自动垃圾回收(GC) | 手动管理内存,使用 malloc/free | |
应用场景 | 数据分析、AI、Web开发、自动化 | 操作系统、游戏引擎、嵌入式、底层开发 | |
开发效率 | 高,代码量少 | 低,代码量较大 | |
并发支持 | GIL 限制,多进程/协程优化 | 线程级并发,多核计算支持良好 |
结论:
• Python 适合快速开发、数据处理、AI,但性能较弱。
• C/C++ 适合底层开发、游戏引擎、高性能计算,但开发难度大。
Python vs Java
对比点 | Python | Java |
---|---|---|
语法 | 简单、动态类型,代码量少 | 复杂、静态类型,代码量较多 |
学习曲线 | 低,适合初学者 | 较陡峭,适合有编程基础的人 |
执行速度 | 较慢(解释执行) | 快(JVM + JIT 优化) |
并发支持 | asyncio(协程)、多进程 | 原生多线程(Thread、Executor) |
跨平台性 | 强,Windows/Linux/macOS | 强,JVM 适配多平台 |
生态 | AI、数据科学、Web 开发 | 企业级应用、移动开发(Android) |
应用场景 | AI、自动化、Web 开发、数据分析 | 大型企业系统、Web、Android |
结论:
• Python 适合数据分析、AI、自动化开发,更易学习,适合小团队快速开发。
• Java 适合企业级应用开发、Android、Web 后端,性能更好,企业级架构更稳定。
Python vs JavaScript
对比点 | Python | JavaScript |
---|---|---|
用途 | 主要用于后端(Web、AI、数据分析) | 主要用于前端(浏览器端)、后端(Node.js) |
执行环境 | 运行在服务器端 | 运行在浏览器和服务器(Node.js) |
语法 | 简洁,适合新手 | 复杂,包含闭包、异步、事件驱动 |
异步支持 | asyncio、multiprocessing | async/await、事件驱动模型 |
生态 | 数据科学、AI、后端开发 | 前端开发、Node.js、全栈开发 |
流行框架 | Django、Flask、FastAPI | React、Vue、Angular(前端),Express(后端) |
结论:
• Python 适用于后端、数据分析、AI,开发效率高。
• JavaScript 适用于前端、全栈开发,依赖浏览器环境。
• 如果开发 Web 全栈,Python(后端)+ JavaScript(前端)是常见组合。
Python vs Go
对比点 | Python | Go(Golang) |
---|---|---|
用途 | Web、AI、数据分析、脚本 | 高并发后端、微服务、云计算 |
执行速度 | 慢,解释执行 | 快,编译执行 |
并发支持 | asyncio、multiprocessing | Goroutines(高效协程) |
生态 | 数据科学、AI、Web | 云计算、微服务、后端系统 |
代码简洁度 | 简洁 | 更简洁 |
部署方式 | 依赖 Python 运行环境 | 直接编译成二进制,无依赖 |
结论:
• Python 适用于 AI、数据分析、Web 开发,开发速度快。
• Go 适用于微服务、高并发后端,性能更高,适合大规模后端系统。
Python vs Rust
对比点 | Python | Rust |
---|---|---|
用途 | 数据分析、Web、AI | 系统编程、高性能计算、安全 |
执行速度 | 慢(解释执行) | 超快(编译执行,无 GC) |
安全性 | 动态类型,易错 | 强类型,编译时内存安全检查 |
生态 | 强,PyPI 生态丰富 | 新兴语言,生态仍在增长 |
适用场景 | 快速开发,数据分析、AI | 底层开发、高性能、安全关键系统 |
结论:
• Python 适合高效开发、数据分析、AI,上手简单。
• Rust 适合底层、高性能、安全应用,但学习曲线较陡峭。
Python vs R(数据科学领域)
对比点 | Python | R |
---|---|---|
用途 | 通用编程、数据分析、AI | 统计分析、数据可视化 |
数据处理 | pandas、numpy | dplyr、ggplot2 |
机器学习 | scikit-learn、tensorflow | caret、randomForest |
易用性 | 适合编程开发者 | 适合统计学家 |
结论:
• Python 在 AI 和机器学习方面更强,适合多用途开发。
• R 在统计分析、数据可视化方面更专业,适合科研和统计学家。
Python运行环境
Python 运行环境(解释器)主要分为 官方 CPython 解释器、第三方解释器 和 JIT(即时编译)优化版本,不同的解释器适用于不同的应用场景,例如高性能计算、嵌入式系统、移动端、分布式计算等。
常用Python 运行环境
CPython(官方标准解释器)
• 官网:https://www.python.org/
• C 语言实现,是 Python 官方默认解释器
• 兼容所有 Python 库和扩展
• 缺点:GIL(全局解释器锁)限制了多线程性能
•适用场景:通用 Python 开发,如 Web、数据分析、AI 训练等
Anaconda(科学计算 & 数据分析)
• 官网:https://www.anaconda.com/
• 内置 NumPy、Pandas、Matplotlib、Jupyter Notebook
• 适用于 数据分析、机器学习
•适用场景:数据科学、AI
Miniconda(轻量级 Anaconda)
• 官网:https://docs.conda.io/en/latest/miniconda.html
• 只包含 Python 和 Conda,用户可按需安装扩展包
• 适用于对空间要求较高的环境
• 适用场景:数据科学、轻量级 Python 运行环境
高性能 Python 运行环境
PyPy(JIT 编译,加速 Python 代码运行)
• 官网:https://www.pypy.org/
• 使用 JIT(即时编译),比 CPython 快 4~10 倍
• 适合长时间运行的 Python 代码
• 缺点:部分 C 扩展库支持不完善
•适用场景:Web 后端、高性能计算、数据处理
Numba(数值计算加速)
• 官网:https://numba.pydata.org/
• 使用 LLVM 编译,优化 NumPy 计算
• 适用于 科学计算、AI 训练
• 适用场景:机器学习、科学计算
Pyston(Web 性能优化)
• 官网:https://github.com/pyston/pyston
• 由 Dropbox 开发,针对 Web 后端优化
• Django、Flask 代码运行更快
•适用场景:高性能 Web 后端
基于 Java/.NET 平台的 Python
Jython(基于 Java,兼容 JVM)
• 官网:https://www.jython.org/
• 可以直接调用 Java 代码
• 运行在 Java 虚拟机(JVM) 上
• 缺点:仅支持 Python 2,不支持 Python 3
• 适用场景:需要 Java 生态的 Python 开发
IronPython(基于 .NET,兼容 C#)
• 官网:https://ironpython.net/
• 运行在 .NET / Mono 平台
• 可以直接调用 C# / .NET 代码
• 缺点:对 Python 3 支持较差
• 适用场景:.NET 平台的 Python 开发
GraalPython(多语言混合编程)
• 官网:https://www.graalvm.org/python/
• 运行在 GraalVM 上
• 可与 JavaScript、Ruby、R 等语言互操作
• 适用场景:高性能多语言应用
嵌入式 Python 运行环境
MicroPython(嵌入式系统)
• 官网:https://micropython.org/
• 适用于 ESP32、STM32、树莓派 Pico 等微控制器(MCU)
• 仅占 256 KB Flash,16 KB RAM
• 适用于物联网(IoT)
• 适用场景:嵌入式开发、物联网
CircuitPython(硬件开发)
• 官网:https://circuitpython.org/
• 由 Adafruit 开发,适用于电子 DIY
• 主要用于教育和硬件开发
• 适用场景:硬件开发、教育
云端 Python 运行环境
Google Colab(免费 GPU/TPU 运行 Python)
• 官网:https://colab.research.google.com/
• 免费使用 Google GPU / TPU
• 适用于 机器学习、深度学习
• 适用场景:AI 训练、数据分析
AWS Lambda(Serverless Python 运行)
• 官网:https://aws.amazon.com/lambda/
• 适用于 云端自动化
• 无需服务器,按调用计费
• 适用场景:云端事件驱动应用
交互式 Python 运行环境
IPython(增强版交互式 Shell)
• 官网:https://ipython.org/
• 提供 更强大的命令行体验
• 适用于数据分析和 AI
Repl.it(在线 Python 运行)
• 官网:https://replit.com/
• 无需安装 Python 解释器
• 适用于 Web 在线编程
如何选择 Python 运行环境
• 通用开发:CPython
• 高性能计算:PyPy、Numba
• 嵌入式/物联网:MicroPython、CircuitPython
• 云端计算:Google Colab、AWS Lambda
• Java/.NET 开发:Jython、IronPython
Python开发工具
Python 开发工具主要包括 集成开发环境(IDE)、代码编辑器、调试工具、包管理工具、虚拟环境管理工具、构建和测试工具 等。
集成开发环境(IDE)
IDE 提供代码编写、调试、测试等一体化开发体验,适合大规模项目开发。
PyCharm(最强 Python IDE,专业开发者推荐)
• 官网:https://www.jetbrains.com/pycharm/
• 强大的代码补全、代码分析、重构功能
• 内置调试器、测试框架、数据库支持
VS Code(轻量 & 强大的 IDE 替代品)
• 官网:https://code.visualstudio.com/
• 轻量级、插件丰富(Python 插件支持 Jupyter、调试、Linting)
• 适用于 Web 开发、数据分析、AI 开发
• GitHub Copilot 集成,支持 AI 编程辅助
Jupyter Notebook / JupyterLab(数据科学 & AI 开发推荐)
• 官网:https://jupyter.org/
• 交互式环境,适合数据分析、机器学习、可视化
• 支持 Markdown、LaTeX,适合作为教学工具
• JupyterLab 是增强版,支持多标签、多窗口管理
Spyder(科学计算 & 数据分析推荐)
• 官网:https://www.spyder-ide.org/
• 内置 NumPy、Pandas、Matplotlib,适用于科学计算
• 提供 MATLAB 风格的交互界面
• 适合数据分析、人工智能、量化金融等领域
Thonny(适合 Python 初学者)
• 官网:https://thonny.org/
• 轻量级,适合 Python 初学者
• 直观的调试功能,便于理解 Python 运行机制
• 适用于 Raspberry Pi 开发
代码编辑器
代码编辑器比 IDE 轻量,适合日常开发或快速编写 Python 脚本。
Sublime Text
• 官网:https://www.sublimetext.com/
• 轻量级、启动速度快,支持 Python 插件
Atom(GitHub 开发,类似 VS Code,已停止维护)
• 官网:https://atom.io/
• 虽然 Atom 已停止维护,但仍然是许多开发者喜欢的编辑器
Vim / Neovim(终端爱好者推荐)
• 官网:https://www.vim.org/ | https://neovim.io/
• 适合命令行环境,Neovim 是 Vim 的增强版,支持 LSP、自动补全
虚拟环境 & 依赖管理工具
Python 需要管理多个项目的依赖,虚拟环境工具可以避免冲突。
venv(Python 标准库自带)
• 创建环境:
python -m venv my_env
• 激活环境:
# Windows:
my_env\Scripts\activate
# macOS/Linux
source my_env/bin/activate
virtualenv(比 venv 更灵活)
• 安装:
pip install virtualenv
• 创建环境:
virtualenv my_env
conda(数据科学推荐)
• 官网:https://docs.conda.io/
• 适用于科学计算和 AI 开发,支持 Python 及非 Python 依赖管理
• 创建环境:
conda create -n my_env python=3.9
包管理工具
Python 依赖管理工具用于安装、升级、卸载第三方库。
pip(官方推荐)
• 安装库:
pip install numpy
• 查看已安装库:
pip list
• 升级库:
pip install --upgrade numpy
pipenv(更现代的包管理工具)
• 安装:
pip install pipenv
• 创建虚拟环境并安装依赖:
pipenv install requests
poetry(更现代的依赖管理工具)
• 官网:https://python-poetry.org/
• 更适合管理复杂项目依赖
测试工具
Python 内置 unittest,但第三方测试框架更强大。
pytest
• 最流行的测试框架
unittest
• Python 内置,适用于标准化测试
coverage(代码覆盖率分析)
• 代码覆盖率分析
构建 & 自动化工具
Makefile(适用于 Linux & macOS)
• 用于自动执行 Python 任务(如测试、部署)
Invoke(任务自动化)
• 官网:https://www.pyinvoke.org/
• 类似 Makefile,但使用 Python 语法
tox(测试多版本兼容性)
• 官网:https://tox.readthedocs.io/
• 适用于跨 Python 版本测试
Python开发社区
官方社区和基金会
Python 官方网站 & Python Software Foundation(PSF)
• 官网: https://www.python.org/
• Python 软件基金会(PSF) 负责 Python 语言的发展、维护和推广,并管理全球 Python 相关活动(如 PyCon)。
• 提供官方文档、新闻、版本更新、第三方库等信息。
论坛 & 讨论社区
Python 官方论坛
• Python Discourse: https://discuss.python.org/
• 这是 Python 核心开发者和用户的官方论坛,讨论 Python 语言改进、库开发、生态发展等。
• Python-ideas:https://mail.python.org/mailman/listinfo/python-ideas
• Python-dev:https://mail.python.org/mailman/listinfo/python-dev
• 用于 Python 语言的新特性讨论,Python 维护者会在这里交流技术方案。
Stack Overflow(编程问答社区)
• 网址:https://stackoverflow.com/questions/tagged/python
• Stack Overflow 是全球最知名的编程问答平台,其中 Python 是最受欢迎的标签之一,开发者可以在这里提问、回答问题、学习最佳实践。
Reddit
• Python 版块:[https://www.reddit.com/r/Python/](https://www.reddit.com/r/Python/
• 机器学习版块:https://www.reddit.com/r/MachineLearning/
• Reddit 上的 Python 版块用于讨论 Python 语言、框架、库、项目等,用户可以分享经验、资源和新闻。
Dev.to
• Python 版块:https://dev.to/t/python
• 一个面向开发者的博客和技术文章分享平台,许多 Python 爱好者在这里撰写技术文章、教程和经验分享。
社交媒体 & 技术博客
Twitter/X
• 官方账号:https://twitter.com/ThePSF(Python Software Foundation)
• Python 开发者:许多 Python 核心开发者和数据科学家在 Twitter 上活跃,分享最新动态、技术趋势和最佳实践。
Medium
• 网址:https://medium.com/tag/python
• Medium 是技术博客聚集地,Python 相关的 AI、数据科学、Web 开发、自动化等内容非常丰富。
Real Python(优质 Python 教程)
• 网址:https://realpython.com/
• 提供高质量的 Python 教程、项目实战、技巧总结,适合初学者和进阶开发者学习。
会议 & 线下活动
PyCon(Python 开发者大会)
• 全球 PyCon:https://pycon.org/
• PyCon 是全球最大规模的 Python 会议,每年在多个国家举办,包括 PyCon US、PyCon Europe、PyCon China 等。
• 会议内容涉及 Python 语言、数据科学、AI、Web 开发、开源项目等。
DjangoCon(Django 开发者大会)
• 官网:https://www.djangoproject.com/community/conferences/
• 主要面向 Django 开发者,分享最新的 Django 生态、应用案例和最佳实践。
SciPy Conference(科学计算 & AI 会议)
• 官网:https://www.scipy.org/scipy-conference
• 主要讨论 Python 在科学计算、数据科学、人工智能等领域的应用。
JupyterCon(Jupyter 生态大会)
• 官网:https://jupytercon.com/
• 专注于 Jupyter Notebook、数据科学、教育和 AI 领域的应用。
国内Python 社区
Meetup(本地 Python 组织)
• 网址:https://www.meetup.com/topics/python/
• Meetup 是全球开发者组织活动的平台,很多城市都有 Python 相关的线下交流活动。
中国 Python 社区
• Python 中文社区:https://www.python-china.org/
• SegmentFault Python 版块:https://segmentfault.com/t/python
• 知乎 Python 话题:https://www.zhihu.com/topic/19552832