Python极简教程01:简介

Python极简教程
Python是一门可以追溯到20世纪80年代的“古老语言”,历久弥新,一开始从配角开始,自觉做好“胶水语言”(glue language)的角色。历经40年的发展、3个大版本的更迭,在各大软硬件平台、技术领域都有了广泛的应用。在如今的AI时代里,Python在人工智能、机器学习、大数据等科研领域的广泛生态更是使其有了稳定的用户根基,终于在2021年10月首次登顶TIOBE排行榜,从此稳居各大编程语言排行榜榜首,成为名副其实的“第一编程语言”。
Python TIOBE 指数

Python的简史

Python前身是1980 年代后期,Guido van Rossum 在荷兰的 CWI(Centrum Wiskunde & Informatica) 研究所时所开发的“ABC 语言”。Guido带着“简单、易读、功能强大”的目标设计了“ABC语言”,经过一段时间的实践,“ABC语言”基本实现了“简单、易读”的目标,但也暴露出了“不够灵活”的问题。于是1989 年圣诞节期间,Guido带着“简洁、高效、可读性强且功能强大”的目标开始设计Python,简单地说就是要有C/C++语言的强大功能和Shell 脚本的易用性。

Python 0.9.0

1991 年 2 月,Guido 首次公开发布了 Python 0.9.0。该版本实现了模块、函数、异常处理等基本特性,同时还初步具有面向对象编程(OOP)的能力,这一点在“面向对象”的软件开发大势所趋的背景下非常重要。

Python 1.0

1994 年 1 月,Python 1.0发布,并陆续加入了 map()、filter()、reduce()、lambda 等函数式编程特性。在随后的几年时间里,Python完成了 Unix、Linux、Windows、Mac OS等主流平台的移植,使得Python既可以作为C/C++的辅助语言以提供程序的灵活性,也可以作为Shell 脚本的扩展以增强其功能。

Python 2.0

2000年10月,Python 2.0发布,这个版本增加了实现完整的垃圾回收功能,并提供了对Unicode的支持。同时,Python生态社区也得以壮大,并于次年成立了PSF(Python Software Foundation),极大促进了Python语言的开发和推广。

Python 3.0

2008年12月,Python 3.0发布,这是Python历史上的一个重要里程碑,它解决了Python早期版本中的一些设计缺陷,摒弃了一些不规范的语法。但Python 3破坏了向后兼容性,这导致了许多开发者和组织在迁移到Python 3上犹豫不决。然而从整体上来看,Python 3的强势升级为Python后续的大发展奠定了基础。

Python有哪些优势

Python 作为一门高效、易学、跨平台、应用广泛的编程语言,在多个层面上展现出强大的优势。

学习层面

Python 以 简洁易用 著称,其语法设计接近自然语言,降低了初学者的学习门槛。同时,它对 面向对象编程(OOP)、函数式编程(Functional Programming) 和 过程式编程(Procedural Programming) 这三种主要编程范式的良好支持,使其学习曲线平顺且深远。从零基础的编程爱好者到资深开发者,都能根据自己的需求和编程经验选择合适的编程方式,逐步深入。
此外,Python 具有 交互式解释器(REPL),可以直接运行代码并即时查看结果,有助于学习者快速理解编程概念和调试代码。同时,大量的免费学习资源、官方文档、开源项目以及社区论坛(如 Stack Overflow、GitHub、Python 官方文档)也为学习者提供了丰富的支持。

开发层面

Python 是 跨平台的语言,可以在 Windows、Linux、macOS 等主流桌面操作系统上流畅运行。此外,它还能运行在 嵌入式系统(如 Raspberry Pi、STM32、ESP32、BeagleBone Black 等),具备极强的可移植性。这种特性使得 Python 成为从桌面应用到物联网(IoT)设备开发的理想选择。

在软件开发过程中,Python 提供了 动态类型(Dynamic Typing) 和 自动内存管理(Garbage Collection),避免了低级语言中常见的繁琐类型声明和手动内存管理问题,提高了开发效率。借助 强大的标准库 和 丰富的第三方库生态,开发者可以快速构建功能强大的应用程序,而无需从零开始编写大量代码。

Python 还支持 模块化编程,开发者可以使用模块和包组织代码,提高代码复用性,增强可维护性。此外,Python 兼容 C、C++、Java,可以与这些语言的代码进行交互,进一步提升其扩展性和性能。

应用层面

Python 在多个领域均有广泛应用,涵盖从 Web 开发 到 人工智能 的各种技术方向:
• 数据分析与科学计算:Python 具有强大的数据处理能力,得益于 numpy、pandas、matplotlib 等库的支持,能够轻松进行数据分析、可视化和统计计算。
• 机器学习与人工智能:tensorflow、pytorch、scikit-learn 等库使得 Python 成为 AI 领域的主流编程语言,广泛用于深度学习、计算机视觉和自然语言处理。
• Web 开发:Python 通过 flask、django 等框架,能够快速构建高效、安全的 Web 应用,并支持 RESTful API 开发。
• 自动化运维与脚本编写:运维人员和 DevOps 工程师可以使用 Python 编写自动化脚本,进行服务器管理、日志分析、批量任务执行等工作。
• 网络爬虫:得益于 requests、scrapy 等库的支持,Python 可以轻松编写高效的爬虫程序,抓取和分析网页数据。
• 金融科技:Python 在高频交易、量化分析、金融数据建模等方面也有广泛应用,quantlib、pandas 等库支持金融计算和市场分析。
• 游戏开发:pygame 等库可以用于 2D 游戏开发,而 unity 也支持 Python 进行游戏脚本编写。
• 嵌入式开发与物联网(IoT):Python 可用于嵌入式系统开发,支持 Raspberry Pi 等硬件平台,广泛用于智能家居、机器人等领域。

社区层面

Python 拥有 全球最大的开发者社区之一,其开源生态系统极其活跃,确保了 Python 持续更新和完善。Python 社区的主要特点包括:
• 丰富的开源资源:GitHub、PyPI(Python Package Index)上有大量的开源项目和第三方库,可以直接使用或作为学习参考。
• 活跃的技术支持:开发者可以通过 Stack Overflow、Reddit、Python 官方论坛 等渠道寻求帮助,社区成员会积极解答各种问题。
• 官方文档和教程:Python 官方提供了详细的文档,并且有大量免费的学习教程、MOOC 课程(如 Coursera、Udacity)供学习者使用。
• 全球性大会和活动:每年都会举办 PyCon(Python Conference)等全球性 Python 会议,推动 Python 语言的创新和发展。
• 多样化的贡献方式:无论是新手还是资深开发者,都可以通过贡献代码、撰写文档、回答问题等方式参与 Python 生态的建设。

产业层面

Python 在全球各大公司、机构和行业中得到了广泛采用,包括:
• 科技巨头:Google、Facebook、Netflix、Microsoft、Amazon、IBM、Tesla 都在使用 Python 进行数据分析、AI 研究和 Web 开发。
• 金融行业:银行和量化交易公司(如高盛、摩根大通)使用 Python 进行金融建模、算法交易、数据分析。
• 医疗与生物信息:Python 在基因组学、药物研发、医学影像分析中被广泛应用(如 Biopython)。
• 政府与科研:NASA、CERN、MIT 等机构使用 Python 进行科学计算和仿真分析。
• 游戏与娱乐:Python 在游戏开发(如 pygame)和 3D 建模(如 Blender 的 bpy 模块)中发挥重要作用。

Python与其他语言的比较

尽管 Python 具有 易学易用、跨平台、生态丰富 等诸多优势,但它也存在一些明显的缺点,使其在某些领域的适用性受限。下面是Python与其他主流语言的对比,以帮助更好地使用Python。

Python vs C/C++

对比点PythonC/C++
语法简洁,接近自然语言,易读易写语法复杂,需要手动管理内存
学习难度低,适合初学者高,适合有编程基础的人
执行速度慢,解释执行(可用 JIT/Cython 加速)快,编译执行,适合高性能计算
内存管理自动垃圾回收(GC)手动管理内存,使用 malloc/free
应用场景数据分析、AI、Web开发、自动化操作系统、游戏引擎、嵌入式、底层开发
开发效率高,代码量少低,代码量较大
并发支持GIL 限制,多进程/协程优化线程级并发,多核计算支持良好

结论

Python 适合快速开发、数据处理、AI,但性能较弱。

C/C++ 适合底层开发、游戏引擎、高性能计算,但开发难度大。

Python vs Java

对比点PythonJava
语法简单、动态类型,代码量少复杂、静态类型,代码量较多
学习曲线低,适合初学者较陡峭,适合有编程基础的人
执行速度较慢(解释执行)快(JVM + JIT 优化)
并发支持asyncio(协程)、多进程原生多线程(Thread、Executor)
跨平台性强,Windows/Linux/macOS强,JVM 适配多平台
生态AI、数据科学、Web 开发企业级应用、移动开发(Android)
应用场景AI、自动化、Web 开发、数据分析大型企业系统、Web、Android

结论

Python 适合数据分析、AI、自动化开发,更易学习,适合小团队快速开发。

Java 适合企业级应用开发、Android、Web 后端,性能更好,企业级架构更稳定。

Python vs JavaScript

对比点PythonJavaScript
用途主要用于后端(Web、AI、数据分析)主要用于前端(浏览器端)、后端(Node.js)
执行环境运行在服务器端运行在浏览器和服务器(Node.js)
语法简洁,适合新手复杂,包含闭包、异步、事件驱动
异步支持asyncio、multiprocessingasync/await、事件驱动模型
生态数据科学、AI、后端开发前端开发、Node.js、全栈开发
流行框架Django、Flask、FastAPIReact、Vue、Angular(前端),Express(后端)

结论

Python 适用于后端、数据分析、AI,开发效率高

JavaScript 适用于前端、全栈开发,依赖浏览器环境

• 如果开发 Web 全栈,Python(后端)+ JavaScript(前端)是常见组合。

Python vs Go

对比点PythonGo(Golang)
用途Web、AI、数据分析、脚本高并发后端、微服务、云计算
执行速度慢,解释执行快,编译执行
并发支持asyncio、multiprocessingGoroutines(高效协程)
生态数据科学、AI、Web云计算、微服务、后端系统
代码简洁度简洁更简洁
部署方式依赖 Python 运行环境直接编译成二进制,无依赖

结论

Python 适用于 AI、数据分析、Web 开发,开发速度快。

Go 适用于微服务、高并发后端,性能更高,适合大规模后端系统。

Python vs Rust

对比点PythonRust
用途数据分析、Web、AI系统编程、高性能计算、安全
执行速度慢(解释执行)超快(编译执行,无 GC)
安全性动态类型,易错强类型,编译时内存安全检查
生态强,PyPI 生态丰富新兴语言,生态仍在增长
适用场景快速开发,数据分析、AI底层开发、高性能、安全关键系统

结论

Python 适合高效开发、数据分析、AI,上手简单。

Rust 适合底层、高性能、安全应用,但学习曲线较陡峭。

Python vs R(数据科学领域)

对比点PythonR
用途通用编程、数据分析、AI统计分析、数据可视化
数据处理pandas、numpydplyr、ggplot2
机器学习scikit-learn、tensorflowcaret、randomForest
易用性适合编程开发者适合统计学家

结论

Python 在 AI 和机器学习方面更强,适合多用途开发。

R 在统计分析、数据可视化方面更专业,适合科研和统计学家。

Python运行环境

Python 运行环境(解释器)主要分为 官方 CPython 解释器第三方解释器JIT(即时编译)优化版本,不同的解释器适用于不同的应用场景,例如高性能计算、嵌入式系统、移动端、分布式计算等。

常用Python 运行环境

CPython(官方标准解释器)
官网https://www.python.org/
C 语言实现,是 Python 官方默认解释器
• 兼容所有 Python 库和扩展
缺点:GIL(全局解释器锁)限制了多线程性能
适用场景:通用 Python 开发,如 Web、数据分析、AI 训练等

Anaconda(科学计算 & 数据分析)
官网https://www.anaconda.com/
内置 NumPy、Pandas、Matplotlib、Jupyter Notebook
• 适用于 数据分析、机器学习
适用场景:数据科学、AI

Miniconda(轻量级 Anaconda)
官网https://docs.conda.io/en/latest/miniconda.html
• 只包含 Python 和 Conda,用户可按需安装扩展包
• 适用于对空间要求较高的环境
适用场景:数据科学、轻量级 Python 运行环境

高性能 Python 运行环境

PyPy(JIT 编译,加速 Python 代码运行)
官网https://www.pypy.org/
• 使用 JIT(即时编译),比 CPython 快 4~10 倍
• 适合长时间运行的 Python 代码
缺点:部分 C 扩展库支持不完善
适用场景:Web 后端、高性能计算、数据处理

Numba(数值计算加速)
官网https://numba.pydata.org/
• 使用 LLVM 编译,优化 NumPy 计算
• 适用于 科学计算、AI 训练
适用场景:机器学习、科学计算

Pyston(Web 性能优化)
官网https://github.com/pyston/pyston
• 由 Dropbox 开发,针对 Web 后端优化
• Django、Flask 代码运行更快
适用场景:高性能 Web 后端

基于 Java/.NET 平台的 Python

Jython(基于 Java,兼容 JVM)
官网https://www.jython.org/
• 可以直接调用 Java 代码
• 运行在 Java 虚拟机(JVM)
缺点:仅支持 Python 2,不支持 Python 3
适用场景:需要 Java 生态的 Python 开发

IronPython(基于 .NET,兼容 C#)
官网https://ironpython.net/
• 运行在 .NET / Mono 平台
• 可以直接调用 C# / .NET 代码
缺点:对 Python 3 支持较差
适用场景:.NET 平台的 Python 开发

GraalPython(多语言混合编程)
官网https://www.graalvm.org/python/
• 运行在 GraalVM 上
• 可与 JavaScript、Ruby、R 等语言互操作
适用场景:高性能多语言应用

嵌入式 Python 运行环境

MicroPython(嵌入式系统)
官网https://micropython.org/
• 适用于 ESP32、STM32、树莓派 Pico 等微控制器(MCU)
• 仅占 256 KB Flash,16 KB RAM
• 适用于物联网(IoT)
适用场景:嵌入式开发、物联网

CircuitPython(硬件开发)
官网https://circuitpython.org/
• 由 Adafruit 开发,适用于电子 DIY
• 主要用于教育和硬件开发
适用场景:硬件开发、教育

云端 Python 运行环境

Google Colab(免费 GPU/TPU 运行 Python)
官网https://colab.research.google.com/
免费使用 Google GPU / TPU
• 适用于 机器学习、深度学习
适用场景:AI 训练、数据分析

AWS Lambda(Serverless Python 运行)
官网https://aws.amazon.com/lambda/
• 适用于 云端自动化
• 无需服务器,按调用计费
适用场景:云端事件驱动应用

交互式 Python 运行环境

IPython(增强版交互式 Shell)
官网https://ipython.org/
• 提供 更强大的命令行体验
• 适用于数据分析和 AI

Repl.it(在线 Python 运行)
官网https://replit.com/
无需安装 Python 解释器
• 适用于 Web 在线编程

如何选择 Python 运行环境

通用开发:CPython
高性能计算:PyPy、Numba
嵌入式/物联网:MicroPython、CircuitPython
云端计算:Google Colab、AWS Lambda
Java/.NET 开发:Jython、IronPython

Python开发工具

Python 开发工具主要包括 集成开发环境(IDE)代码编辑器调试工具包管理工具虚拟环境管理工具构建和测试工具 等。

集成开发环境(IDE)

IDE 提供代码编写、调试、测试等一体化开发体验,适合大规模项目开发。

PyCharm(最强 Python IDE,专业开发者推荐)
官网https://www.jetbrains.com/pycharm/
• 强大的代码补全、代码分析、重构功能
• 内置调试器、测试框架、数据库支持

VS Code(轻量 & 强大的 IDE 替代品)
官网https://code.visualstudio.com/
• 轻量级、插件丰富(Python 插件支持 Jupyter、调试、Linting)
• 适用于 Web 开发、数据分析、AI 开发
• GitHub Copilot 集成,支持 AI 编程辅助

Jupyter Notebook / JupyterLab(数据科学 & AI 开发推荐)
官网https://jupyter.org/
• 交互式环境,适合数据分析、机器学习、可视化
• 支持 Markdown、LaTeX,适合作为教学工具
JupyterLab 是增强版,支持多标签、多窗口管理

Spyder(科学计算 & 数据分析推荐)
官网https://www.spyder-ide.org/
• 内置 NumPy、Pandas、Matplotlib,适用于科学计算
• 提供 MATLAB 风格的交互界面
• 适合数据分析、人工智能、量化金融等领域

Thonny(适合 Python 初学者)
官网https://thonny.org/
• 轻量级,适合 Python 初学者
• 直观的调试功能,便于理解 Python 运行机制
• 适用于 Raspberry Pi 开发

代码编辑器

代码编辑器比 IDE 轻量,适合日常开发或快速编写 Python 脚本。
Sublime Text
官网https://www.sublimetext.com/
• 轻量级、启动速度快,支持 Python 插件

Atom(GitHub 开发,类似 VS Code,已停止维护)
官网https://atom.io/
• 虽然 Atom 已停止维护,但仍然是许多开发者喜欢的编辑器

Vim / Neovim(终端爱好者推荐)
官网https://www.vim.org/ | https://neovim.io/
• 适合命令行环境,Neovim 是 Vim 的增强版,支持 LSP、自动补全

虚拟环境 & 依赖管理工具

Python 需要管理多个项目的依赖,虚拟环境工具可以避免冲突。
venv(Python 标准库自带)
创建环境

python -m venv my_env

激活环境

# Windows:
my_env\Scripts\activate
# macOS/Linux
source my_env/bin/activate

virtualenv(比 venv 更灵活)

安装

pip install virtualenv

创建环境

virtualenv my_env

conda(数据科学推荐)
官网https://docs.conda.io/
• 适用于科学计算和 AI 开发,支持 Python 及非 Python 依赖管理
创建环境

conda create -n my_env python=3.9

包管理工具

Python 依赖管理工具用于安装、升级、卸载第三方库。
pip(官方推荐)
安装库

pip install numpy

查看已安装库

pip list

升级库

pip install --upgrade numpy

pipenv(更现代的包管理工具)
安装

pip install pipenv

创建虚拟环境并安装依赖

pipenv install requests

poetry(更现代的依赖管理工具)
官网https://python-poetry.org/
• 更适合管理复杂项目依赖

测试工具

Python 内置 unittest,但第三方测试框架更强大。

pytest
• 最流行的测试框架

unittest
• Python 内置,适用于标准化测试

coverage(代码覆盖率分析)
• 代码覆盖率分析

构建 & 自动化工具

Makefile(适用于 Linux & macOS)
• 用于自动执行 Python 任务(如测试、部署)

Invoke(任务自动化)
官网https://www.pyinvoke.org/
• 类似 Makefile,但使用 Python 语法

tox(测试多版本兼容性)
官网https://tox.readthedocs.io/
• 适用于跨 Python 版本测试

Python开发社区

官方社区和基金会

Python 官方网站 & Python Software Foundation(PSF)

官网https://www.python.org/
Python 软件基金会(PSF) 负责 Python 语言的发展、维护和推广,并管理全球 Python 相关活动(如 PyCon)。

• 提供官方文档、新闻、版本更新、第三方库等信息。

论坛 & 讨论社区

Python 官方论坛

Python Discoursehttps://discuss.python.org/
• 这是 Python 核心开发者和用户的官方论坛,讨论 Python 语言改进、库开发、生态发展等。

Python-ideashttps://mail.python.org/mailman/listinfo/python-ideas
Python-devhttps://mail.python.org/mailman/listinfo/python-dev
• 用于 Python 语言的新特性讨论,Python 维护者会在这里交流技术方案。

Stack Overflow(编程问答社区)
网址https://stackoverflow.com/questions/tagged/python
• Stack Overflow 是全球最知名的编程问答平台,其中 Python 是最受欢迎的标签之一,开发者可以在这里提问、回答问题、学习最佳实践。

Reddit
Python 版块:[https://www.reddit.com/r/Python/](https://www.reddit.com/r/Python/
机器学习版块https://www.reddit.com/r/MachineLearning/
• Reddit 上的 Python 版块用于讨论 Python 语言、框架、库、项目等,用户可以分享经验、资源和新闻。

Dev.to
Python 版块https://dev.to/t/python
• 一个面向开发者的博客和技术文章分享平台,许多 Python 爱好者在这里撰写技术文章、教程和经验分享。

社交媒体 & 技术博客

Twitter/X
官方账号https://twitter.com/ThePSF(Python Software Foundation)
Python 开发者:许多 Python 核心开发者和数据科学家在 Twitter 上活跃,分享最新动态、技术趋势和最佳实践。

Medium
网址https://medium.com/tag/python
• Medium 是技术博客聚集地,Python 相关的 AI、数据科学、Web 开发、自动化等内容非常丰富。

Real Python(优质 Python 教程)
网址https://realpython.com/
• 提供高质量的 Python 教程、项目实战、技巧总结,适合初学者和进阶开发者学习。

会议 & 线下活动

PyCon(Python 开发者大会)
全球 PyConhttps://pycon.org/
• PyCon 是全球最大规模的 Python 会议,每年在多个国家举办,包括 PyCon US、PyCon Europe、PyCon China 等。
• 会议内容涉及 Python 语言、数据科学、AI、Web 开发、开源项目等。

DjangoCon(Django 开发者大会)
官网https://www.djangoproject.com/community/conferences/
• 主要面向 Django 开发者,分享最新的 Django 生态、应用案例和最佳实践。

SciPy Conference(科学计算 & AI 会议)
官网https://www.scipy.org/scipy-conference
• 主要讨论 Python 在科学计算、数据科学、人工智能等领域的应用。

JupyterCon(Jupyter 生态大会)
官网https://jupytercon.com/
• 专注于 Jupyter Notebook、数据科学、教育和 AI 领域的应用。

国内Python 社区

Meetup(本地 Python 组织)

网址https://www.meetup.com/topics/python/
• Meetup 是全球开发者组织活动的平台,很多城市都有 Python 相关的线下交流活动。

中国 Python 社区

Python 中文社区https://www.python-china.org/
SegmentFault Python 版块https://segmentfault.com/t/python
知乎 Python 话题https://www.zhihu.com/topic/19552832

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值