Can only use .dt accessor with datetimelike values

在这里插入图片描述
出现了这个bug
在这里插入图片描述data2[‘下单时间’]是这样的
在这里插入图片描述
开始挺纳闷,不知道是为啥,后来想应该是类型问题
在这里插入图片描述
想着是不是要pandas版本的问题,因为前面对时间进行处理将,开始在csv中是这样的
在这里插入图片描述
然后处理在这里插入图片描述
变成了
在这里插入图片描述
感觉可能版本处理应该可以直接将类型处理好,不过底层的东西还是小白,希望有大神教教
,找资料说可以这样处理[红色框]
在这里插入图片描述然后类型在这里插入图片描述
最后bug解决了

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
<h3>回答1:</h3><br/>这个错误信息表明,在代码中使用了.dt访问器,但是它只能用于具有日期时间值的数据。也就是说,该值不是日期时间类型,因此不能使用.dt访问器。请确保该值具有正确的日期时间类型,然后再尝试使用.dt访问器。 <h3>回答2:</h3><br/>AttributeError: can only use .dt accessor with datetimelike values 是一种Python错误,通常在使用Pandas DataFrame的.dt访问器时出现。这种错误意味着在数据帧中的列不是datetime或timestamp类型,因此.dt访问器不能用于该列。 在Pandas中,DateTime类型是指具有日期和时间信息的对象,例如Timestamp或DatetimeIndex。这些对象具有.dt访问器,可用于提取日期和时间信息,例如年,月,日等。因此,如果使用.dt访问器时遇到“ can only use .dt accessor with datetimelike values ”错误,则需要检查数据帧中包含哪些列并确保它们都是datetime或timestamp类型。如果存在非datetime或timestamp类型的列,则需要转换为要在.dt访问器中使用的类型。 以下是一种可能导致此类错误的情况: import pandas as pd df = pd.read_csv('sample.csv') df['date'] = pd.to_datetime(df['date']) print(df['quantity'].dt.month) 在这个例子中,我们读取了一个名为sample.csv的文件作为数据帧,并尝试提取“quantity”列的月份。但是,由于“quantity”列不是datetime类型,所以会引发“can only use .dt accessor with datetimelike values”错误。为解决这个问题,我们需要将“quantity”列转换为datetime类型。 下面是一个解决方案: import pandas as pd df = pd.read_csv('sample.csv') df['date'] = pd.to_datetime(df['date']) df['quantity'] = pd.to_datetime(df['quantity'], format='%Y%m%d%H%M%S') print(df['quantity'].dt.month) 在这个解决方案中,我们使用pd.to_datetime函数将“quantity”列转换为datetime类型,并指定了日期的格式。当我们再次尝试提取“quantity”列的月份时,不再会发生“can only use .dt accessor with datetimelike values”错误。 <h3>回答3:</h3><br/>这个错误提示通常是由于使用了pandas库的.dt属性来处理日期或时间数据时出现的。其中.dt属性是Pandas中带有日期时间属性的序列(Series)或日期时间索引(DatetimeIndex)对象专用的操作符。比如,我们可以使用.dt.day, .dt.month, .dt.year等属性来从日期时间对象中提取出该日期/时间的年、月、日等信息。 然而,当我们在处理非日期时间序列对象时,就会出现“属性错误”(attribute error)提示,具体的错误提示是“can only use .dt accessor with datetimelike values”(只能使用.dt访问器处理Datetime-like(类似日期时间)类型的数据)。 那么,如何解决这个错误?首先我们需要确定我们正在处理的序列(Series)或索引(Index)中是否包含日期时间类型的数据。如果不是,我们需要先将原数据转换为日期时间格式的数据,然后再使用.dt属性进行操作。一个常见的方法是通过Pandas中的.to_datetime()函数将原数据转换为日期或时间戳格式,例如: import pandas as pd # 假设我们有一个包含日期字符串的列表data data = ['2021-07-01', '2021-07-02', '2021-07-03'] # 将列表data转换为日期时间格式的Series对象date_series date_series = pd.to_datetime(data) # 然后我们就可以使用.dt属性进行操作了,比如获取日、月、年等信息 print(date_series.dt.day) print(date_series.dt.month) print(date_series.dt.year) 总之,遇到类似“attributeerror: can only use .dt accessor with datetimelike values”的错误,我们需要先检查数据类型是否为日期时间类型,如果不是,需要先将数据转换为日期时间格式,然后再进行操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据闲逛人

谢谢大嘎喔~ 开心就好

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值