用kNN算法诊断乳腺癌--基于R语言

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

1 目的

  利用机器学习根据样本特征自动识别癌细胞,提高检测过程的效率,并尝试改进算法提高模型性能。

2 数据来源

  该演示数据来源于: 机器学习和智能系统中心

3 案例演示

3.1 数据读取及预处理

1. 读取数据并查看数据类型

  运行代码:

1.	data<-read.csv("G:\\wisc_bc_data.csv",stringsAsFactors = FALSE)  #读取数据
2.	str(data)                                                        #查看数据类型  

   部分结果展示:

'data.frame':	569 obs. of  32 variables:
 $ id               : int  87139402 8910251 905520 868871 9012568 906539 925291 87880 862989 89827 ...
 $ diagnosis        : chr  "B" "B" "B" "B" ...
 $ radius_mean      : num  12.3 10.6 11 11.3 15.2 ...
 $ texture_mean     : num  12.4 18.9 16.8 13.4 13.2 ...
 $ perimeter_mean   : num  78.8 69.3 70.9 73 97.7 ...
 $ area_mean        : num  464 346 373 385 712 ...
 $ smoothness_mean  : num  0.1028 0.0969 0.1077 0.1164 0.0796 ...
 $ compactness_mean : num  0.0698 0.1147 0.078 0.1136 0.0693 ...
 $ concavity_mean   : num  0.0399 0.0639 0.0305 0.0464 0.0339 ...
 $ points_mean      : num  0.037 0.0264 0.0248 0.048 0.0266 ...
 $ symmetry_mean    : num  0.196 0.192 0.171 0.177 0.172 ...
 $ dimension_mean   : num  0.0595 0.0649 0.0634 0.0607 0.0554 ...
 $ radius_se        : num  0.236 0.451 0.197 0.338 0.178 ...
 $ texture_se       : num  0.666 1.197 1.387 1.343 0.412 ...
 $ perimeter_se     : num  1.67 3.43 1.34 1.85 1.34 ...
 $ area_se          : num  17.4 27.1 13.5 26.3 17.7 ...
 $ smoothness_se    : num  0.00805 0.00747 0.00516 0.01127 0.00501 ...
 $ compactness_se   : num  0.0118 0.03581 0.00936 0.03498 0.01485 ...
 $ concavity_se     : num  0.0168 0.0335 0.0106 0.0219 0.0155 ...
 $ points_se        : num  0.01241 0.01365 0.00748 0.01965 0.00915 ...
 $ symmetry_se      : num  0.0192 0.035 0.0172 0.0158 0.0165 ...
 $ dimension_se     : num  0.00225 0.00332 0.0022 0.00344 0.00177 ...
 $ radius_worst     : num  13.5 11.9 12.4 11.9 16.2 ...
 $ texture_worst    : num  15.6 22.9 26.4 15.8 15.7 ...
 $ perimeter_worst  : num  87 78.3 79.9 76.5 104.5 ...
 $ area_worst       : num  549 425 471 434 819 ...
 $ smoothness_worst : num  0.139 0.121 0.137 0.137 0.113 ...
 $ compactness_worst: num  0.127 0.252 0.148 0.182 0.174 ...
 $ concavity_worst  : num  0.1242 0.1916 0.1067 0.0867 0.1362 ...
 $ points_worst     : num  0.0939 0.0793 0.0743 0.0861 0.0818 ...
 $ symmetry_worst   : num  0.283 0.294 0.3 0.21 0.249 ...
 $ dimension_worst  : num  0.0677 0.0759 0.0788 0.0678 0.0677 ...

  通过运行结果我们可以较为明晰地观察到各列数据数据类型,为数据处理需要,利用stringsAsFactors= FALSE防止字符串string的列被辨认成factor。

2 .查看数据基本特征

  1)良性、恶性肿块数字特征

  运行代码:

1.	data1<-data[-1]                                   #剔除id特征数据  
2.	table(data1$diagnosis)                            #输出良性、恶性肿块数量特征  

  结果展示:

  B   M 
357 212 

  由运行结果我们可以观察到,案例中良性、恶性肿块数量分别为357,212。

  2)良性、恶性肿块数量占比

1.	summary(data1[c("radius_mean","area_mean","smoothness_mean")])     #输出部分案例特征信息 

  结果展示:

radius_mean       area_mean      smoothness_mean  
 Min.   : 6.981   Min.   : 143.5   Min.   :0.05263  
 1st Qu.:11.700   1st Qu.: 420.3   1st Qu.:0.08637  
 Median :13.370   Median : 551.1   Median :0.09587  
 Mean   :14.127   Mean   : 654.9   Mean   :0.09636  
 3rd Qu.:15.780   3rd Qu.: 782.7   3rd Qu.:0.10530  
 Max.   :28.110   Max.   :2501.0   Max.   :0.16340  

  通过运行结果显示。我们可以发现案例样本半径、面积、光滑度的样本特征分布情况,其中样本面积范围为143.5-2501.0;样本光滑度范围为0.05-0.16。

3.2 工具函数编写

1.标准化函数编写

  运行代码:

1.	normalize<-function(x){  
2.	  return((x-min(x))/(max(x)-min(x)))  
3.	}                                                  #创建极大极小标准化函数  
4.	normalize(c(1,2,3,4,5))                            #测试函数效果  

2.工具函数性能测试

  运行代码:

> normalize(c(1,2,3,4,5))            #测试函数效果

   结果展示:

[1] 0.00 0.25 0.50 0.75 1.00

  通过函数测试效果,可以看出,标准化函数编写成功。

3.3 原始数据标准化

  运行代码:

1.	data2<-as.data.frame(lapply(data1[2:31],normalize))    #标准化数据,并转化为数据框格式  
2.	summary(data2$area_mean)                               #输出area_mean特征  

  结果展示:

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  0.1174  0.1729  0.2169  0.2711  1.0000

4 模型建立及优化

4.1 训练集测试集划分

  由于样本数据本身为随机化数据,故以前469个样本作为训练集,后100个样本作为测试集,并将这些类的标签分别存储在相应因子向量中。

  运行代码:

1.	data2_train<-data2[1:469,]                      #创建训练集  
2.	data2_test<-data2[470:569,]                     #创建测试集  
3.	data2_train_lables<-data1[1:469,1]              #存储因子向量型训练集类标签  
4.	data2_test_lables<-data1[470:569,1]             #存储因子向量型测试集类标签   

4.2 基于数据训练模型

  运行代码:

1.	library("class")                    #加载包
2.	data2_test_pred<-knn(train = data2_train,test = data2_test,cl<-data2_train_lables,k=21)                                         #将k值设置为21
3.	library("gmodels")                  #加载包
4.	CrossTable(x=data2_test_lables,y=data2_test_pred,prop.chisq = F) 

  结果展示:

data2_test_pred
data2_test_lablesBenigenMalignantRow Total
Benigen61061
1.00000.610
0.9680.000
0.6100.000
Malignant23739
0.0510.9490.390
0.0321.000
0.0200.370
Column Total6337100
0.6300.370

  由运行结果显示:模型判断准确率达(37+61)/100=98%,其中共存在37个真阳性、2个假阴性案例。

4.3 改进模型,提高模型性能

1. 利用Z-分数标准化数据

  运行代码:

1.	data4<-as.data.frame(scale(data1[-1]))    
2.	summary(data4$area_mean)  
3.	data4_train<-data4[1:469,]  
4.	data4_test<-data4[470:569,]  
5.	data4_train_lables<-data1[1:469,1]  
6.	data4_test_lables<-data1[470:569,1]  
7.	data4_test_pred<-knn(train = data4_train,test = data4_test,cl<-data4_train_lables,k=21) 
8.	CrossTable(x=data4_test_lables,y=data4_test_pred,prop.chisq = F)

  结果展示:

data4_test_pred
data4_test_lablesBenigenMalignantRow Total
Benigen61061
1.00000.610
0.9680.000
0.6100.000
Malignant53439
0.1280.8720.390
0.0761.000
0.0500.340
Column Total6634100
0.6600.340

  由运行结果显示:模型判断准确率达(61+34)/100=95%,其中共存在34个真阳性、5个假阴性案例,相比于极大极小标准化法,模型效能相对较低。

2.测试其他k值

  运行代码:

1.	data5_test_pred<-knn(train = data2_train,test = data2_test,cl<-data2_train_lables,k=1)  
2.	CrossTable(x=data2_test_lables,y=data5_test_pred,prop.chisq = F) #测试性能  
3.	data6_test_pred<-knn(train = data2_train,test = data2_test,cl<-data2_train_lables,k=5)  
4.	CrossTable(x=data2_test_lables,y=data6_test_pred,prop.chisq = F) #测试性能  
5.	data7_test_pred<-knn(train = data2_train,test = data2_test,cl<-data2_train_lables,k=11)  
6.	CrossTable(x=data2_test_lables,y=data7_test_pred,prop.chisq = F) #测试性能   
7.	data8_test_pred<-knn(train = data2_train,test = data2_test,cl<-data2_train_lables,k=15)  
8.	CrossTable(x=data2_test_lables,y=data8_test_pred,prop.chisq = F) #测试性能 
9.	data9_test_pred<-knn(train = data2_train,test = data2_test,cl<-data2_train_lables,k=21)  
10.	CrossTable(x=data2_test_lables,y=data9_test_pred,prop.chisq = F) #测试性能  
11.	data10_test_pred<-knn(train = data2_train,test = data2_test,cl<-data2_train_lables,k=27)  
12.	CrossTable(x=data2_test_lables,y=data10_test_pred,prop.chisq = F) #测试性能  

  结果展示:

K值假阴性假阳性错误分类的百分比(%)
1134
5202
11303
15303
21202
27404

  由运行结果显示,K分别取1、5、11、15、21、27,当k,取21时,模型测试得出的准确率最高,达到了98%。

  • 8
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
KNN(K-Nearest Neighbors)算法是一种基于实例的学习方法,它通过计算样本之间的距离来进行分类,即将待分类样本与训练数据集中距离最近的K个样本的类别作为该样本的类别。下面介绍如何使用KNN算法分类乳腺癌类型。 1. 数据预处理 首先需要准备乳腺癌数据集,并进行数据预处理。数据集中每个样本包含30个特征,其中包括肿块的大小、形状、密度等信息。需要将数据集分为训练集和测试集,一般将数据集的80%作为训练集,20%作为测试集。 2. 特征选择 由于数据集中包含30个特征,需要进行特征选择来提高分类的准确性。可以使用相关性分析、卡方检验等方法进行特征选择,选取与分类结果相关性较高的特征。 3. KNN分类器的实现 使用Python编程语言实现KNN分类器。可以使用scikit-learn库中的KNeighborsClassifier类来实现KNN分类器。在实现KNN分类器时,需要设置K值、距离度量方法等参数。 4. 模型评估 使用测试集来评估KNN分类器的性能。可以使用混淆矩阵、准确率、召回率、F1值等指标来评估模型性能。可以通过调整K值等参数来提高模型性能。 总结: 使用KNN算法分类乳腺癌类型需要进行数据预处理、特征选择、KNN分类器的实现和模型评估等步骤。KNN算法是一种简单有效的分类算法,但是在处理大规模数据时效率较低。在实际应用中,需要根据具体情况选择合适的分类算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值