POJ 3390 Print Words in Lines(DP)

Print Words in Lines
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 1624
Accepted: 864

Description

We have a paragraph of text to print. A text is a sequence of words and each word consists of characters. When we print a text, we print the words from the text one at a time, according to the order the words appear in the text. The words are printed in lines, and we can print at most M characters in a line. If there is space available, we could print more than one word in a line. However, when we print more than one word in a line, we need to place exactly one space character between two adjacent words in a line. For example, when we are given a text like the following:

This is a text of fourteen words and the longest word has ten characters

Now we can print this text into lines of no more than 20 characters as the following.

This is
a text of
fourteen words
and the longest
word
has ten characters

However, when you print less than 20 characters in a line, you need to pay a penalty, which is equal to the square of the difference between 20 and the actual number of characters you printed in that line. For example in the first line we actually printed seven characters so the penalty is (20 − 7)2 = 169. The total penalty is the sum of all penalties from all lines. Given the text and the number of maximum number of characters allowed in a line, compute the minimum penalty to print the text.
 

Input

The first line of the input is the number of test cases (C). The first line of a test case is the maximum number of characters allowed in a line (M). The second line of a test case is the number of words in the text (N). The following N lines are the length (in character) of each word in the text. It is guaranteed that no word will have more than M characters, N is at most 10000, and M is at most 100.

Output

The output has C lines. Each line has the minimum penalty one needs to pay in order to print the text in that test case.

Sample Input

2
20
14
4
2
1
4
2
8
5
3
3
7
4
3
3
10
30
14
4
2
1
4
2
8
5
3
3
7
4
3
3
10

Sample Output

33
146

Source

题意  把n个单词排版   每行最多m个字符 不同单词间有空格 每行最后一个单词后没空格   空格占一个字符   当一行的字符数与m的差为t时 就会扣t*t分  求最少扣分


令a[i]表示第i个单词的长度   s[i]表示从第一个单词到第i个单词单词长度和d[i]表示前i个单词排版后最少扣的分  

则t=m-(s[i] - s[j] + i - j - 1)表示把从第j+1个单词到第i个单词放在一行时这行的字符长度与m的差 

那么当t>=0时  有转移方程 d[i]=min(d[i],d[j]+t*t) ;

有了方程程序就好写了:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 10005;
int s[N], d[N], a[N], t, cas, m, n;
int main()
{
    scanf ("%d", &cas);
    while (cas--)
    {
        scanf ("%d%d", &m, &n);
        for (int i = 1; i <= n; ++i)
        {
            scanf ("%d", &a[i]);
            s[i] = s[i - 1] + a[i];
        }
        memset (d, 0x3f, sizeof (d)); d[0] = 0;
        for (int i = 1; i <= n; ++i)
            for (int j = i - 1; j >= 0; --j)
            {
                t = m - (s[i] - s[j] + i - j - 1);
                if (t >= 0)  d[i] = min (d[i], d[j] + t * t);
                else break;
            }
        printf ("%d\n", d[n]);
    }
}


题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值