时空AI技术:利用轨迹数据全方面「监测」路网交通状态

准确的网络范围交通状态估计对于许多交通运营和城市应用至关重要。然而,现有方法在城市级别执行实时推理时通常会遇到可扩展性问题,或者在有限数据下不够稳健。目前,来自探测车辆的 GPS 轨迹数据已成为许多交通应用的流行数据源。GPS轨迹数据覆盖面积大,非常适合全网应用,但也存在稀疏、不同时间、不同地点异构性高的缺点。京东智能城市团队的这项研究在基础的填补问题上增加了对结果的可解释性,给解决城市交通问题提供了更强的支撑。研究者提出的自利联盟学习(Self-interested Coalitional Learning, SCL)仅通过在重建网络下增加一个轻量级的判别器,则可以获取填补结果的置信度,同时指导重建网络的学习来增强模型的准确性及鲁棒性。该研究已被接收为KDD 2021 Research Track 论文。

图片

研究背景

精确的全路网交通状态估计对城市交通运营至关重要。然而,现有的方法(例如基于现有可观测道路利用矩阵分解等方法对缺失道路信息进行填补)在进行市域级的实时推断时往往存在着可扩展性问题,并且在有限的数据下缺乏鲁棒性。近年,由于GPS轨迹数据的覆盖面积大,采样频率高,从而成为了交通应用的理想数据,但其也存在着稀疏和不同时空范围上交通状态差异较大等的缺点。在此问题上,研究者基于部分可观测的交通信息,开发了一个时空状态填补模型,对全路网的交通状态进行估计并给出推断结果的可致信度,以济南部分路网为例,效果如下图所示。

图片

近年来,许多研究者在基础的交通状态估计任务上都取得了较好的成果。但是复杂的交通状态下,仅利用缺乏可靠性的高缺失率数据,我们仍然在寻找一个较为稳健的方法,能够解决城市中大范围的交通状态估计问题,同时对于估计结果的可解释性的缺乏也是实际应用中的一大痛点。

图片

上图展现了真实路网下不同时间的GPS轨迹点分布状态。从图中我们可以看到,不断时空范围下,轨迹点的分布有着较大的差别,同时轨迹点采样并不均匀,这就导致了数据的不可靠问题。以及交通场景下对实时性的要求也让短时间内GPS点覆盖的路段更为稀疏,这也进一步增加了估计的难度。所以希望能够开发一种在低质数据下能够提供高精度,高鲁棒性以及可解释性的实时交通状态估计框架。

方法:利用自利联盟学习策略进行时空填补

基于提取的部分观察到的速度,研究者提出了一个自利的联合学习(Self-interested Coalitional Learning, SCL)策略,利用重建器来解决交通状态的填补任务,并利用判别器来提供对估计结果的可解释。SCL通过重建网络器和判别器之间的信息共享来建立合作,以提高它们的性能。

图片

如上图所示,在SCL中,两个任务既不像多目标优化中那样完全合作,也不像对抗性学习中那样完全相互对抗,而是平衡合作和竞争的好处。重构器f使用来自判别器d的信息,通过引入一个额外的损失项 loss_W 来促进其学习。

图片

其中,O,U分别代表可观测和不可观测的样本集合。同时我们可以看到,loss_W在形式上与重建任务的优化函数相同,在此基础上,基于判别器所给出的估计置信度P来对样本的更新赋予不同的权重从而修正并加速重建器的优化。loss_W中的权重系数可以体现出对于可观测或不可观测数据在不同置信度情况下的修正情况,这与boosting的思想较为相似。

同时,重构器f也向判别器d提供额外的重构误差。双方都利用对方所提供的信息来提高自己的任务性能。此外,我们认为重建者f是自利的,它试图通过提供尽可能少的重建信息来挑战判别者。这可以被认为是一个联盟博弈,其中重建者是自利的。在合作过程中,当重建误差不再为判别者d的判断提供有用的信息时,我们就有理由相信重建者f已经取得了满意的数据重建性能。

在模型的具体构建中,我们引入了一个时空图卷积变分自编码器(TemporalGraph convolutional Viriantional AutoEncoder, TG-VAE)作为重建器。它提取并利用数据的时空编码,通过重建部分观察到的数据来推断缺失的道路速度。掩码判别网络(Mask Discrimination Network, MDN)被建模为判别器。它接受来自重构器的额外信息,并通过重构数据的掩码提供推算结果的置信度。

图片

实验:从精度,鲁棒性,可解释性三个方面对该研究进行验证

实验采用了济南市一个月的数据,研究者将数据按照不同时间分为早晚高峰,平峰以及夜间。并在不同时间段与基线方法以及所提出方法的变体进行比较。从表中可以可以看出,该研究的定量结果显著超越了其他方法。

图片

同时,研究者将数据的缺失率从原始的40%逐步提升至70%来验证模型在不同缺失率下的鲁棒性。

在这里插入图片描述

最后为了验证模型的可解释性,研究者将在不同的轨迹数量和估计置信度下的道路分布进行可视化,图中显示了归一化的历史平均值和原始/重建速度的关系。

图片

从上图(a)中我们可以看到,在采样到的轨迹数量s较大的情况下,所计算出的速度较为可靠(置信度p>0.5),与历史均值分布更为相似。而采样轨迹较少的路段(置信度p<0.5)所计算出的速度则与历史均值有较大的偏差,该研究所给出的估计结果也具有同样的模式。

图(b)则向我们展示了判别器所给出置信度较低的路段所采样的速度,大多数路段均为无轨迹覆盖路段或仅有一条轨迹覆盖的低可靠性路段。

总结

该研究提出了一种新颖的ST-SCL框架,以解决网络范围内的交通状态缺失值填补问题。所提出的框架结合了时空交通速度估算问题的独特特征,同时提供了稳健和可解释的结果。该研究中所提出的自利联盟学习(SCL)策略通过引入一个轻量的的判别器,可以提高各种半监督学习问题的性能,这为很多实际应用提供了新的思路。

本研究由西电与京东智能城市研究院联合出品,点击链接:[https://www.researchgate.net/publication/352101458_Network-Wide_Traffic_States_Imputation_Using_Self-interested_Coalitional_Learning] 查看论文。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值