
人工智能
京东云开发者
京东云开发者(Developer of JD Technology)为AI、云计算、IoT等相关领域开发者提供技术分享交流。平台将发布京东产品技术信息、行业技术内容、技术活动及大赛等资讯。拥抱技术,与开发者携手预见未来!
展开
-
【如何提高IT运维效率】深度解读京东云基于NLP的运维日志异常检测AIOps落地实践
日志在 IT 行业中被广泛使用,日志的异常检测对于识别系统的运行状态至关重要。解决这一问题的传统方法需要复杂的基于规则的有监督方法和大量的人工时间成本。原创 2023-01-28 10:45:50 · 40 阅读 · 0 评论 -
ChatGPT/InstructGPT详解
GPT系列是OpenAI的一系列预训练文章,GPT的全称是Generative Pre-Trained Transformer,顾名思义,GPT的目的就是通过Transformer为基础模型,使用预训练技术得到通用的文本模型。目前已经公布论文的有文本预训练GPT-1,GPT-2,GPT-3,以及图像预训练iGPT。据传还未发布的GPT-4是一个多模态模型。最近非常火的ChatGPT和今年年初公布的[1]是一对姐妹模型,是在GPT-4之前发布的预热模型,有时候也被叫做GPT3.5。原创 2023-01-16 16:16:48 · 232 阅读 · 0 评论 -
Dive into TensorFlow系列(2)- 解析TF核心抽象op算子
op代表计算图中的节点,是tf.Operation对象,代表一个计算单元。用户在创建模型和训练代码时,会创建一系列op及其依赖关系,并将这些op和依赖添加到tf.Graph对象中(一般为默认图)。比如:tf.matmul()就是一个op,它有两个输入tensor和一个输出tensor。用户编写的模型训练代码一般由TF原生的op算子及其依赖关系组成,但有时候我们定义的计算逻辑在TF中没有相应的op实现。根据TensorFlow官网的建议,我们应当先组合python op算子或python函数进行尝试。原创 2022-11-16 11:33:39 · 25 阅读 · 0 评论 -
提高IT运维效率,深度解读京东云AIOps落地实践(异常检测篇)
时间序列的异常检测是实际应用中的一个关键问题,尤其是在 IT 行业。我们没有采用传统的基于阈值的方法来实现异常检测,而是通过深度学习提出了一种无阈值方法:基于 LSTM 网络的基线(一个 LSTM 框架辅助几个优化步骤)和无监督检测(神经网络和多种机器学习算法的组合)协同综合分析时间序列。当时间序列显示出清晰的周期性形态的情况下基线表现良好,而无监督检测在效率要求高且周期性不太清晰的情况下表现出色。通过两个并行模块的互补设计,可以在不依赖阈值设定和调整的情况下实现无阈值异常检测。京东云内部实践证明,我们所提原创 2022-11-01 11:03:31 · 105 阅读 · 0 评论 -
为什么Kubernetes和容器与机器学习密不可分?
基于容器环境下进行的人工智能项目的三个阶段,包括探索、训练模型和部署,是非常有潜力的。每个阶段具体又包括什么呢?下文将对这三个阶段展开说明。翻译 2022-09-19 10:32:56 · 74 阅读 · 0 评论 -
人工智能领域又一突破:京东探索研究院推出超级深度学习模型ViTAEv2 准确度高达91.2%
日前,京东探索研究院联合悉尼大学提出了更大规模、更优效果、对各类视觉任务具有更好适应性的超级深度学习模型ViTAEv2。值得提及的是,具有6亿参数的ViTAEv2模型在不依赖任何外源数据的情况下,斩获了ImageNet Real数据集分类准确度“世界排名第一”的突出成绩,精准高达91.2%,成功刷新图片分类技术领域的世界级纪录。一直以来,ImageNet数据集作为目前最大的"图像分类"公开数据集,其识别准确率榜单吸引了包括谷歌、微软、Facebook等国际顶尖科技公司以及斯坦福大学...原创 2022-03-23 16:44:29 · 198 阅读 · 0 评论 -
321,京东言犀×NLPCC 2022挑战赛开赛
听说了么?那个写了30亿字“种草”文案的京东言犀要举办大赛了!原创 2022-03-21 19:16:58 · 225 阅读 · 0 评论 -
京东探索研究院NLP水平超越微软 织女Vega v1模型位居GLUE榜首
在近日公布的全球自然语言处理领域顶级测试GLUE中,京东探索研究院联合悉尼大学、武汉大学以及北京航空航天大学组成梦之队(JDExplore Dream Team, d-team)参与其中,其提出的织女模型Vega v1以总平均分91.3分荣登榜首夺冠,再次刷新自然语言理解技术世界纪录,超越同场竞技的微软、Facebook、斯坦福大学等企业和高校团队。值得提及的是,测试中织女模型在九个子任务中的四个单项任务,即情感分类任务SST-2(The Stanford Sentiment Treebank)、语义相转载 2022-01-04 18:55:08 · 156 阅读 · 0 评论 -
时空AI技术:利用轨迹数据全方面「监测」路网交通状态
准确的网络范围交通状态估计对于许多交通运营和城市应用至关重要。然而,现有方法在城市级别执行实时推理时通常会遇到可扩展性问题,或者在有限数据下不够稳健。目前,来自探测车辆的 GPS 轨迹数据已成为许多交通应用的流行数据源。GPS轨迹数据覆盖面积大,非常适合全网应用,但也存在稀疏、不同时间、不同地点异构性高的缺点。京东智能城市团队的这项研究在基础的填补问题上增加了对结果的可解释性,给解决城市交通问题提供了更强的支撑。研究者提出的自利联盟学习(Self-interested Coalitional Learnin原创 2021-11-03 10:10:30 · 1027 阅读 · 0 评论 -
AI主播“小可”亮相,分享京东11.11全方位技术保障
10月17日,以“热爱·向上的力量”为主题的京东11.11全球热爱季启动会在北京环球度假区举行,正式拉开2021年京东11.11的序幕。活动现场,不仅有奥运举重冠军吕小军、知名主持人春妮分享了自己与京东11.11的故事,京东云AI主播“小可”也登台亮相,介绍了京东云将如何全方位、全链路的为京东11.11提供技术保障,为消费者带来更“巴适”的消费体验。AI 主播亮相,上岗京东11.11“小可”是京东云基于虚拟数字人技术打造的AI主播。在京东11.11启动会现场,“小可”以拟人化的声音,为观众介绍人工智原创 2021-10-19 11:12:54 · 527 阅读 · 0 评论