今天学习的还是动态的规划,写了几个对动态规划有了更多的了解。
还学习了滚动数组优化
来题目实际演示一波
题目背景
此题为纪念 LiYuxiang 而生。
题目描述
LiYuxiang 是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同种类的草药,采每一种都需要一些时间,每一种也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是 LiYuxiang,你能完成这个任务吗?
此题和原题的不同点:
11. 每种草药可以无限制地疯狂采摘。
22. 药的种类眼花缭乱,采药时间好长好长啊!师傅等得菊花都谢了!
输入格式
输入第一行有两个整数,分别代表总共能够用来采药的时间 tt 和代表山洞里的草药的数目 mm。
第 22 到第 (m + 1)(m+1) 行,每行两个整数,第 (i + 1)(i+1) 行的整数 a_i, b_iai,bi 分别表示采摘第 ii 种草药的时间和该草药的价值。
输出格式
输出一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
输入输出样例
输入 #1复制
70 3 71 100 69 1 1 2
输出 #1复制
140
说明/提示
数据规模与约定
由于显示的问题,数据就每打出来了
出自:P1616 疯狂的采药 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
很显然这是一个背包问题,而且是完全背包问题
通过我们的大脑进行计算可以得出用二维的数组解的方法由大化小
ans[n][m]=max(ans[n][m-商品的容量]+商品的价值,ans[n-1][m])
//公式的来源有点快你好好的想想
//前提是我的剩余的容量装的下你
ans[n][m]表示前n种商品,有m的容量,可以取得的最大值
由于我的商品无限
要是我们取了第n种商品,那末就是ans[n][m-商品的容量]+商品的价值(只要减去一次第n种的商品的价值即可)
可以看到上面的转化公式我们应该把右边算出来
所以我们要从问题的最开始算起
ans[0][0]很明显不用算就是0;
但是往上推就是我们要的答案,妙啊
这就是大事化小的魅力
从ans[n][m]到ans[0][0];
ok上代码,no,no
上代码就挂了
因为直接用二维数组空间会爆掉的啦
你肯定发现了,为了计算ans[n][m]我们会浪费很多的空间
这是不太好的有木有更节省空间的方法呀
有的当然有的
你会发现,哎ans[n][m]的计算只和这一条前面的数有关和同位置的上一层有关
那我就可以自己更新自己
把二维变成一维的呀
把保留层数的数组去掉,但是保留层数的循环
理解:当我计算2层的数数据时a[n] 就和a[n-商品的容量],和上一层的a[n]有关
巧了,a[n-商品的容量],先于a[n]被更新,它已经是第二层的数据了,那不就是原来的ans[n][m-商品的容量],我要的就是同层的呀,而a[n]为被更新的时候不就是上层同位置的数吗
于是二维就变成了一维
上代码
#include<stdio.h>
long long fa[10000100];
long long max(long long a,long long b){
if(a>b){
return a;}
return b;
}
int main(){
int a[10100],b[10100];//商品的价值
int n,m;
scanf("%d%d",&n,&m);
for(int jk=1;jk<=m;jk++){
scanf("%d%d",&a[jk],&b[jk]);
}
for(int u=1;u<=m;u++){//滚动的数组好好理解
for(int y=1;y<=n;y++){
if(y>=a[u]){
fa[y]=max(fa[y],fa[y-a[u]]+b[u]);
}
}
}
printf("%lld",fa[n]);
return 0;
}
这是动态规划的完全背包问题
下面来一个01背包问题看看
题目背景
现在乐斗有活动了!每打一个人可以获得 5 倍经验!absi2011 却无奈的看着那一些比他等级高的好友,想着能否把他们干掉。干掉能拿不少经验的。
题目描述
现在 absi2011 拿出了 xx 个迷你装药物(嗑药打人可耻…),准备开始与那些人打了。
由于迷你装药物每个只能用一次,所以 absi2011 要谨慎的使用这些药。悲剧的是,用药量没达到最少打败该人所需的属性药药量,则打这个人必输。例如他用 22 个药去打别人,别人却表明 33 个药才能打过,那么相当于你输了并且这两个属性药浪费了。
现在有 nn 个好友,给定失败时可获得的经验、胜利时可获得的经验,打败他至少需要的药量。
要求求出最大经验 ss,输出 5s5s。
输入格式
第一行两个数,nn 和 xx。
后面 nn 行每行三个数,分别表示失败时获得的经验 \mathit{lose}_ilosei,胜利时获得的经验 \mathit{win}_iwini 和打过要至少使用的药数量 \mathit{use}_iusei。
输出格式
一个整数,最多获得的经验的五倍。
输入输出样例
输入 #1复制
6 8 21 52 1 21 70 5 21 48 2 14 38 3 14 36 1 14 36 2
输出 #1复制
1060
说明/提示
【Hint】
五倍经验活动的时候,absi2011 总是吃体力药水而不是这种属性药。
【数据范围】
- 对于 10\%10% 的数据,保证 x=0x=0。
- 对于 30\%30% 的数据,保证 0\le n\le 100≤n≤10,0\le x\le 200≤x≤20。
- 对于 60\%60% 的数据,保证 0\le n,x\le 1000≤n,x≤100, 10<lose_i,win_i\le 10010<losei,wini≤100,0\le use_i\le 50≤usei≤5。
- 对于 100\%100% 的数据,保证 0\le n,x\le 10^30≤n,x≤103,0<lose_i\le win_i\le 10^60<losei≤wini≤106,0\le use_i\le 10^30≤usei≤103。
【题目来源】
fight.pet.qq.com
absi2011 授权题目
出自:P1802 5 倍经验日 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
看了好一会反应过来这是一道01背包问题(01就是只有拿和不拿两种,也就是说一样东西只有一个)
有趣的是就算输了也会有经验(丧心病狂拿队友刷经验)
转化的公式就是
ans[n][m]=max(ans[n-1][m]+a[n],ans[n-1][m-c[n]]+b[n]);
解释:ans[n][m]就是拿m瓶的药水打前n个人得分最大
第n个人把药全吃了也打不过就是a[n-1][m]+a[n]相当于打前n-1个人应为这个人打输了给了,a[n]的经验
吃药可以打赢就看ans[n-1][m-c[n]]前n-1个人药剩下m-c【n】瓶的最大值 加上打赢的经验b[n]
我们要的是最多经验那就取二者最大的
ps把全部的药都吃还打不过,那你吃个毛线上取送就可以了,还有你的药瓶数不可以为负数把
所以m-c[n]>=0;
当然,这也要优化的啦
但是我不讲了,与上面是一样的但是可以看到转化公式的一点差别
先上代码
#include<stdio.h>
long long max(long long jk,long long jj)
{
if(jk>jj)
{
return jk;
}
return jj;
}
long long ans[1010];
int a[1010],b[1010],c[1010];
int main()
{
int n,m;
scanf("%d%d",&m,&n);
for(int g=1;g<=m;g++){
scanf("%d%d%d",&a[g],&b[g],&c[g]);
}
//ans[n]=max(ans[n],ans[n-a[x]]+b[x]);//用到的是上一层的数据所以从后往前来
for(int y=1;y<=m;y++){
for(int g=n;g>=0;g--){
if(g>=c[y]){
ans[g]=max(ans[g]+a[y],ans[g-c[y]]+b[y]);
}
else{
ans[g]+=a[y];
}
}
}
printf("%lld",ans[n]*5);
return 0;
}
我在注释里面讲了,之前的完全背包用的是同层的数据所以由前往后推,而这01背包的问题
用的是上层的也就可以理解为还未更新的,也就是后面的数据,所以从后面往前面推
下一个
复制Markdown 展开
题目描述
观察下面的数字金字塔。
写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
在上面的样例中,从 7 \to 3 \to 8 \to 7 \to 57→3→8→7→5 的路径产生了最大
输入格式
第一个行一个正整数 rr ,表示行的数目。
后面每行为这个数字金字塔特定行包含的整数。
输出格式
单独的一行,包含那个可能得到的最大的和。
输入输出样例
输入 #1复制
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
输出 #1复制
30
说明/提示
【数据范围】
对于 100\%100% 的数据,1\le r \le 10001≤r≤1000,所有输入在 [0,100][0,100] 范围内。
题目翻译来自NOCOW。
USACO Training Section 1.5
IOI1994 Day1T1
动态规划的入门题目
出自:P1216 [USACO1.5][IOI1994]数字三角形 Number Triangles - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
比起上面的两个还简单一点
很快就可以看到x(最大)+=x的左下(最大)或x的右下(最大)
很明显的就是从左边来还是从右边来更大
样例输入一下就点醒我
把金字塔变成一个半矩形这就是一个天然的二维数组了
再看公式一套
就变成了ans[n][m]+=max(ans[n-1][m](矩形往左边靠拢的,所以原来的左边就是脚下了),ans[n-1][m+1])
而且给的数据还小
我直接开心,也就是说甚至不用一维的优化
直接上代码
#include<stdio.h>
int max(int a,int b)
{
if(a>b)
{
return a;
}
return b;
}
int ans[1010][1010];
int main()
{
int n;
scanf("%d",&n);
for(int h=n; h>=1; h--)
{
for(int y=1; y<=n-h+1; y++)
{
scanf("%d",&ans[h][y]);
}
}
for(int k=2; k<=n; k++)
{
for(int gh=1; gh<=n-k+1; gh++)
{
ans[k][gh]+=max(ans[k-1][gh],ans[k-1][gh+1]);
}
}
printf("%d",ans[n][1]);
return 0;
}
可把我高兴坏了
ok,今天到这就完结了
我们明天见!