机器人强化学习入门学习笔记(二)

       基于上一篇的《机器人强化学习入门学习笔记》,在基于 MuJoCo 的仿真强化学习训练中,除了 PPO(Proximal Policy Optimization)之外,还有多个主流强化学习算法可用于训练机器人直行或其他复杂动作。


🧠 一、常见强化学习算法对比(可用于 MuJoCo)

算法 类型 特点 适合场景
PPO(Proximal Policy Optimization) On-policy 稳定、易调参,训练效率适中 MuJoCo官方推荐、机器人控制首选
SAC(Soft Actor-Critic) Off-policy 探索强、样本效率高 多关节复杂任务、稀疏奖励
TD3(Twin Delayed DDPG) Off-policy 避免过估计,适合连续控制 动作精细控制、稳定性好
DDPG(Deep Deterministic Policy Gradient) Off-policy 最早的连续动作算法之一 适合学习基础
TRPO(Trust Region Policy Optimization) On-policy 稳定但实现复杂 PPO的前身,现已较少使用

✅ 推荐顺序(MuJoCo 中的实用性):PPO > SAC > TD3 > DDPG > TRPO


📌 二、原理讲解(简洁易懂)

(1)PPO算法

PPO 是由 OpenAI 提出的,是一种 策略梯度(Policy Gradient)方法的改进版本,它的目标是:

在不让策略变动太大的前提下,最大化策略更新的期望回报。


🧩 核心思想:限制策略更新幅度

策略梯度方法要优化目标函数:

但如果每次更新步长太大,会让策略发散(学崩),所以 PPO 引入了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaomu_347

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值