链接: http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=690&pid=1001
2016百度之星第一题
关键词:乘法逆元 + 快速幂
Description
度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串。现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串的哈希值。一个字符串的哈希值,由以下公式计算得到:
H(s)=i=1∏i<len(s)(Si−28)(mod9973)
Si 代表 S[i] 字符的 ASCII 码。
请帮助度熊计算大字符串中任意一段的哈希值是多少。
Input
多组测试数据,每组测试数据第一行是一个正整数N,代表询问的次数,第二行一个字符串,代表题目中的大字符串,接下来N行,每行包含两个正整数a和b,代表询问的起始位置以及终止位置。
1 ≤ N ≤ 1,000
1 ≤ len(string) ≤ 100,000
1 ≤ a,b ≤ len(string)
Output
对于每一个询问,输出一个整数值,代表大字符串从 a 位到 b 位的子串的哈希值。
SampleInput
2
ACMlove2015
1 11
8 10
1
testMessage
1 1
SampleOutput
6891
9240
88
Hint
Source
Analyze
dp[i]表示从1到i的乘积,那么对于区间【a,b】就可以用dp[b] / dp[a] (b>=a),到哦这一步我们就可以用到乘法逆元咯。a/b%p = (a * (b^p-2)) % p, 而b^(p-2)我们可以用到快速幂。
Code
#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
string s;
long long dp[100010];
long long quickmod(long long a,long long b)
{
long long sum=1;
while(b)
{
if(b&1)
sum=(sum*a)%9973;
b>>=1;
a=(a*a)%9973;
}
return sum;
}
int main()
{
long long n;
while(scanf("%I64d", &n) != EOF)
{
cin>>s;
dp[0] = 1;
for(long long i=1; i<=s.size(); i++)
dp[i] = (dp[i-1] * (s[i-1]-28) ) % 9973;
long long a, b;
for(long long i=0; i<n; i++)
{
scanf("%I64d%I64d", &a, &b);
if(a > b)
swap(a,b);
printf("%I64d\n", (dp[b]*(quickmod(dp[a-1],9971)%9973))%9973);
}
}
return 0;
}