在排序数组中查找数字 一
题解:
根据目标数字,查看目标数字在数组中出现的次数,注意此处的数组为u=升序排列。
解法:
方法一:
直接遍历查找,方法简单,但时间复杂度为O(n),没有有效利用数组升序的条件。
class Solution {
public int search(int[] nums, int target) {
int size = nums.length;
int res = 0;
for (int i = 0;i < size;i++) {
if (target == nums[i]) {
res += 1;
}
}
return res;
}
}
方法二:(二分查找)
每一步都很关键,有很多细节。
如while的判断,如果按照官方的二分查找解法,while的判断就是left < right.
而本方法的while就必须是 left <= right。
举例:
nums = [5,7,8,8,8,9]
target = 8
第一次:binarySearch(nums,target + 1)
5 | 6 | 8 | 8 | 8 | 9 |
0 | 1 | 2 | 3 | 4 | 5 |
left=0 | mid=2 | right=5 | |||
left=3 | mid=4 | right=5 | |||
left | right | mid=5 | |||||
right | left 返回left=5 |
第二次binarySearch(nums,target)
5 | 6 | 8 | 8 | 8 | 9 |
0 | 1 | 2 | 3 | 4 | 5 |
left=0 | mid=2 | right=5 | |||
left | mid = 0 | right=1 | ||||
left | right | mid = 1 | |||||
right | left 返回left=2 |
最终结果是第一次返回值减第二次返回值等于3,与实际结果一致。
class Solution {
public int binarySearch(int[] nums,int target){
int left = 0, right = nums.length - 1;
while (left <= right){
int mid = left + (right -left) / 2;
if (nums[mid] >= target) {
right = mid - 1;
}else {
left = mid + 1;
}
}
return left;
}
public int search(int[] nums, int target) {
int size = nums.length;
if (size == 0){
return 0;
}
int res = binarySearch(nums,target + 1) - binarySearch(nums,target);
return res;
}
}