最大子序列和问题

最大子序列和问题

,A1A2,...,AN,k=ijAk便0

第一种算法O(N^3)

public static int maxSubSum1(int a[]){
        int maxSum=0;
        for(int i=0;i<a.length;i++){
            for(int j=i;j<a.length;j++){
                int thisSum=0;
                for( int k=i;k<j;k++){
                    thisSum+= a[k];
                }
                if(thisSum>maxSum)
                    maxSum=thisSum;
            }
        }
        return maxSum;
    }

第二种算法O(N^2)

public static int maxSubSum2(int a[]){
        int maxSum=0;
        for(int i=0;i<a.length;i++){
            int thisSum=0;
            for(int j=i;j<a.length;j++){
                thisSum +=a[j];
                if(thisSum>maxSum)
                    maxSum = thisSum;
            }
        }
        return maxSum;
    }

第三种算法O(N logN),分治法
最大子序列的和可能在三处出现,或者出现在输入数据的左半部,或者出现在输入数据的右半部份,或者出现在输入数据的中间部分。前两种情况可以递归求解,第三种情况的最大和可以通过求出前半部分(包含前半部分最后一个元素)的最大和以及后半部分(包含后半部分第一个元素)的最大和而得到。此时将这两个相加。

public static int maxSumRec(int a[] ,int left,int right){
        if(left== right){
            if(a[left]>0)
                return a[left];
            else
                return 0;
        }

        int center = (left+right)/2;
        int maxLeftSum = maxSumRec(a,left,center);
        int maxRightSum = maxSumRec(a,center+1,right);

        int maxLeftBorderSum = 0,leftBorderSum = 0;
        for(int i=center;i>=left;i--){
            leftBorderSum+= a[i];
            if(leftBorderSum > maxLeftBorderSum){
                maxLeftBorderSum = leftBorderSum;
            }
        }

        int maxRightBorderSum = 0,rightBorderSum = 0;
        for(int i=center+1;i<=right;i++){
            rightBorderSum+= a[i];
            if(rightBorderSum > maxRightBorderSum){
                maxRightBorderSum = rightBorderSum;
            }
        }

        return max3(maxLeftSum,maxRightSum,maxLeftBorderSum+maxRightBorderSum);
    }
    private static int max3(int a, int b, int c) {
        int ab = Math.max(a, b);
        return Math.max(c, ab);
    }

    public static int maxSubSum3(int a[]){
        return maxSumRec(a, 0, a.length-1);
    }

第四种算法O(N)
这种算法是比较难看出正确性的。可以知道,当a[i]是负的时,那么它不可能作为最有序列的起点,因为任何包含a[i]的作为起点的序列都可以通过用a[i+1]作为起点而得到改进。类似地,任何负的子序列不可能是最优子序列的前缀。如果在循环中检测到从a[i]到a[j]的子序列是负的,那么可以推进i。关键的结论是,我们不仅可以把i推进到i+1, 而且实际上还可以把它一直推进到j+1。为了看清楚这一点,令p为i+1到j之间的任一下标。开始于下标p的任意子序列都不大于在下标i开始并包含从a[i]到a[p-1]的子序列的对应的子序列,因为后面的这个子序列不是负的(j是使得从下标i开始其值成为负值的序列的第一个下标)。因此,把i推进到j+1是没有风险的。

public static int maxSubSum4(int a[]){
        int maxSum=0,thisSum=0;
        for(int i=0;i<a.length;i++){
            thisSum+=a[i];
            if(thisSum>maxSum)
                maxSum = thisSum;
            else if(thisSum<0)
                thisSum = 0;
        }
        return maxSum;
    }
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值