前k小、前k大算法

问题

面试常考的问题,给定一个数组,求前k小或者前k大。
解法:
1. 快速排序
2. 堆排序
3. 冒泡排序

解法(前k大和前k小思路相反,只说前k大情况)

1. 快速排序 近似O(n)

  1. 利用partition分割成两个数组left[] 和 right[]
  2. 如果此时分割点mid,小于k,说明left中都是前k大的,而且还要在right中取(k-mid)个数
  3. 如果mid大于k,说明前k大的数全部在left中,然后继续在left中找
    ps:求前k小,则维持一个递增数列,求前k大,则维持一个递减数列
public class FastSortBeforeK {

    static int[] array = new int[]{100,20,4,2,87,9,8,5,46,26};

    public static void sort(int low, int high, int k){
        if(low < high){
            //先分出两个数组,mid为分割点
            int mid = partition(low, high);
            //左边的不够k个,还要在右边找
            if(mid < k){
                sort(mid+1, high, k-mid);
            //前k个全部在左边
            }else if(mid > k) {
                sort(low, mid-1, k);
            //刚好k个,直接输出
            }else{
                return;
            }
        }
    }

    public static int partition(int low, int high){
        int privoteKey = array[low];
        int back = privoteKey;
        while(low < high){
            //从右边数,大的全部放到左边
            while(low<high && array[high] <= privoteKey){
                high--;
            }
            //直到发现了有半部分有小于privotekey的数
            array[low] = array[high];
            //从左边数,小的全部放到右边
            while(low<high && array[low] >= privoteKey){
                low++;
            }
            array[high] = array[low];
        }
        array[low] = back;
        return low;
    }

    public static void swap(int i, int j){
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }

    public static void main(String[] args){
        int k = 6;
        sort(0, array.length-1, k-1);
        for(int i = 0; i < k; i++){
            System.out.print(array[i] + " ");
        }
    }
}

2. 堆排序 O(nlogk)

求前k大,就维持一个k大小的小根堆,求前k小,就维持一个k大小的大根堆。
1. 由于我们是求前k大,所以我们构造一个小根堆
2. 从k+1开始,跟堆顶比较,由于小根堆的堆顶是根堆中最小的,如果节点都小于堆顶,自然不可能是前k大的,所以不能加进来
3. 如果大于堆顶,可以加进来
4. 每加一个进来,就要重新调节堆,使堆顶是前k个最小的

public class BeforeKHeap {
    static int array[] = new int[]{0,50,10,90,30,70,40,80,60,20};
    static int size = 9;
    public void sort(int k){//k为4
        //1. 首先构造根堆,为什么i为k/2,因为构造堆从底向上,定位到2
        for(int i = k / 2; i >= 1; i--){
            heapAdjust(i, k);
        }
        //构造完后,此时[10 30 90 50 70 40 80 60 20 ],见下图
        for(int i = k+1; i <= size; i++){
            //如果小于堆顶
            if(array[i] > array[1]){
                swap(1, i);
                heapAdjust(1, k);
            }
        }
    }

    public  void heapAdjust(int root, int end){
        int temp = array[root];
        for(int i = root * 2; i <= end; i*=2){
            //这里不能<=,因为是为了维持k的根堆
            if(i < end && array[i] > array[i+1]){
                i++;
            }
            if(temp <= array[i]){
                break;
            }
            array[root] = array[i];
            root = i;
        }
        array[root] = temp;
    }

    public void swap(int i, int j){
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

    public static void main(String args[]){
        int k = 4;
        new BeforeKHeap().sort(k);
        for(int i = 1; i <= k; i++){
            System.out.print(array[i] + " ");
        }
    }
}

步骤:
1、原堆
这里写图片描述
2、构造k=4的小根堆
这里写图片描述
3、开始从k+1的节点和堆顶比较
这里写图片描述
4、交换后重新调整
这里写图片描述
5、然后比较40,80,60,20,最终形成的根堆,前k个就是最大的k个
这里写图片描述

3. 冒泡排序 O(n*k)

只要冒到第k个就可以了,简单易理解

public class BeforeKMaopao {

    public void sort(int[] array, int k){
        //冒到k就跳出
        for(int i = 0; i < k; i++){
            for(int j = array.length - 1; j > i; j--){
                if(array[j] > array[j-1]){
                    swap(array, j, j-1);
                }
            }
        }
    }

    public void swap(int[] array, int i, int j){
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

    public static void main(String[] args){
        BeforeKMaopao sort = new BeforeKMaopao();
        int[] array = new int[]{50,10,90,30,70,40,80,60,20};
        sort.sort(array, 4);
        for(int i = 0 ; i < 4; i++){
            System.out.print(array[i] + " ");
        }
    }
}
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值