什么是大模型Agent?大模型agent实例应用场景大全,零基础入门到精通,收藏这篇就够了

智能体(Agent)是基于大型语言模型(LLM)的执行单元,通过规划、记忆、工具与行动协同工作。智能体工作流(Agentic Workflow)则是利用多个这样的智能体协作,以自动化和优化业务流程,将复杂任务分解为可管理的子任务,并通过迭代达成目标。

电影《钢铁侠》中的智能助手J.A.R.V.I.S.(Just A Rather Very Intelligent System,即“只是一个相当聪明的系统”)为我们描绘了****一个未来AI Agent的雏形。

**J.A.R.V.I.S.,作为托尼·斯塔克(钢铁侠)的得力助手,**不仅拥有强大的数据处理能力,还能精准理解并执行主人的指令,甚至能在关键时刻提供关键建议。

**
**

*图片*

***一、******Agent*

**什么是LLM Agent(智能体)?**大模型Agent是一种构建于大型语言模型(LLM)之上的智能体,它具备环境感知能力、自主理解、决策制定及执行行动的能力。

*Agent是能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。在技术架构上,Agent从面向过程的架构转变为面向目标的架构,旨在通过感知、思考与行动的紧密结合,完成复杂任务。*

*图片*

**大模型Agent由规划、记忆、工具与行动四大关键部分组成**,分别负责任务拆解与策略评估、信息存储与回忆、环境感知与决策辅助、以及将思维转化为实际行动。**

图片

一、规划(Planning)****:

规划是Agent的思维模型,负责拆解复杂任务为可执行的子任务,并评估执行策略。通过大模型提示工程(如ReAct、CoT推理模式)实现,使Agent能够精准拆解任务,分步解决。

二、记忆(Memory)****:

记忆即信息存储与回忆,包括短期记忆和长期记忆。短期记忆用于存储会话上下文,支持多轮对话;长期记忆则存储用户特征、业务数据等,通常通过向量数据库等技术实现快速存取。

三、工具(Tools)****:

工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。通过接入外部工具(如API、插件)扩展Agent的能力,如ChatPDF解析文档、Midjourney文生图等。

四、行动(Action)****:

行动是Agent将规划与记忆转化为具体输出的过程,包括与外部环境的互动或工具调用。Agent根据规划与记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。

图片

***二、******Agent应用*

适合新手的代理

1.简单的会话代理

概览🔎

上下文感知的对话人工智能可以在交互过程中维护信息,从而实现更自然的对话。

实施🛠️

集成语言模型、提示模板和历史管理器,以生成上下文响应并跟踪对话会话。

2.简单问答代理

概览🔎

使用 LangChain 和 OpenAI 语言模型的应答 (QA) 代理可以理解用户的查询并提供相关、简洁的答案。

实施🛠️

结合 OpenAI 的 GPT 模型、提示模板和 LLMChain,以简化的方式处理用户问题并生成 AI 驱动的响应。

  1. 简单的数据分析代理
概览🔎

由人工智能驱动的数据分析代理使用自然语言解释和回答有关数据集的问题,将语言模型与数据操作工具相结合,以进行直观的数据探索。

实施🛠️

集成语言模型、数据操作框架和代理框架来处理自然语言查询并对合成数据集执行数据分析,从而为非技术用户提供可访问的见解。

  1. LangGraph 简介:构建模块化 AI 工作流程
概览🔎

本教程介绍 LangGraph,这是一个用于创建模块化、基于图形的 AI 工作流程的强大框架。了解如何利用 LangGraph 构建更复杂、更灵活的 AI 代理,以高效处理多步骤流程。

实施🛠️

使用 LangGraph 创建 StateGraph 工作流程的分步指南。本教程涵盖了状态管理、节点创建和图形编译等关键概念。它通过构建一个简单的文本分析管道来演示这些原则,作为更高级代理架构的基础。

  1. ATLAS:学术任务和学习代理系统
概览🔎

ATLAS 演示了如何构建智能多智能体系统,通过人工智能辅助来转变学术支持。该系统利用 LangGraph 的工作流程框架来协调多个专业代理,提供个性化的学术规划、笔记记录和咨询支持。

实施🛠️

使用通过 LangGraph 的工作流框架协同工作的四个专门代理(协调器、规划器、Notewriter 和顾问)来实现状态管理的多代理架构。该系统具有用于档案分析和学术支持的复杂工作流程,并根据学生的表现和反馈不断进行调整。

6.科技论文代理-文献综述

概览🔎

智能研究助手,可帮助用户通过精心策划的工作流程导航、理解和分析科学文献。该系统将学术 API 与复杂的论文处理技术相结合,实现文献审阅任务的自动化,使研究人员能够有效地从学术论文中提取见解,同时保持研究的严谨性和质量控制。

实施🛠️

利用 LangGraph 创建五节点工作流系统,包括决策、规划、工具执行和质量验证节点。该系统集成了用于纸张访问的 CORE API、用于文档处理的 PDFplumber 以及用于分析的高级语言模型。主要功能包括用于可靠论文下载的重试机制、通过 Pydantic 模型进行结构化数据处理,以及具有人机交互验证选项的以质量为中心的改进周期。

7.Chiron - 费曼增强学习代理

概览🔎

一种自适应学习代理,使用结构化检查点系统和费曼式教学来指导用户完成教育内容。该系统处理学习材料(用户提供的或网络检索的),通过交互式检查点验证理解,并在需要时提供简化的解释,从而创建模仿一对一辅导的个性化学习体验。

实施🛠️

使用 LangGraph 编排学习工作流程,包括检查点定义、上下文构建、理解验证和 Feynman 教学节点。该系统集成了用于动态内容检索的网络搜索,采用语义分块进行上下文处理,并管理相关信息检索的嵌入。主要功能包括 70% 的进展理解阈值、交互式人机交互验证以及通过 Pydantic 模型进行结构化输出以实现一致的数据处理。

8.客户支持代理 (LangGraph)

概览🔎

使用 LangGraph 的智能客户支持代理可以对查询进行分类、分析情绪并提供适当的响应或升级问题。

实施🛠️

利用 LangGraph 创建一个结合状态管理、查询分类、情感分析和响应生成的工作流程。

9.论文评分代理 (LangGraph)

概览🔎

使用 LangGraph 和LLM模型的自动论文评分系统根据相关性、语法、结构和分析深度评估论文。

实施🛠️

利用状态图定义评分工作流程,为每个标准合并单独的评分功能。

10.旅行计划代理 (LangGraph)

概览🔎

使用 LangGraph 的旅行规划器演示了如何构建有状态、多步骤的对话式 AI 应用程序,该应用程序收集用户输入并生成个性化旅行行程。

实施🛠️

利用 StateGraph 定义应用程序流程,并结合自定义 PlannerState 进行流程管理。

  1. GenAI职业助理经纪人
概览🔎

GenAI Career Assistant 演示了如何创建一个多代理系统,为生成式 AI 领域的职业提供个性化指导。该系统使用 LangGraph 和 Gemini LLM提供定制的学习路径、简历帮助、面试准备和求职支持。

实施🛠️

利用 LangGraph 的多代理架构,通过基于 TypedDict 的状态管理来协调专业代理(学习、简历、面试、求职)。该系统采用复杂的查询分类和路由,同时与 DuckDuckGo 等外部工具集成,用于职位搜索和动态内容生成。

12 项目经理助理代理

概览🔎

人工智能代理旨在通过自动执行根据项目描述创建可操作任务的过程、识别依赖关系、安排工作以及根据专业知识将任务分配给团队成员来协助项目管理任务。该系统包括风险评估和自我反思功能,通过多次迭代优化项目计划,旨在最大限度地降低项目整体风险。

实施🛠️

利用 LangGraph 编排专门节点的工作流程,包括任务生成、依赖关系映射、调度、分配和风险评估。每个节点都使用 GPT-4o-mini 来按照 Pydantic 模型进行结构化输出。该系统实现了一个自我改进的反馈循环,其中风险评分触发反思循环,从而产生优化项目计划的见解。可视化工具显示跨迭代生成的计划的甘特图。

13 合同分析助理(ClauseAI)

概览🔎

ClauseAI 演示了如何使用多代理方法构建人工智能驱动的合同分析系统。该系统采用专门的人工智能代理来处理合同审查的不同方面,从条款分析到合规性检查,并利用 LangGraph 进行工作流程编排,并利用 Pinecone 进行高效的条款检索和比较。

实施🛠️

使用 LangGraph 实现复杂的基于状态的工作流程,通过合同分析阶段协调多个 AI 代理。该系统具有用于数据验证的 Pydantic 模型、用于条款比较的 Pinecone 向量存储以及用于生成综合合同报告的基于LLM的分析。该实施包括并行处理功能和根据用户需求生成可定制的报告。

14 端到端测试代理

概览🔎

E2E 测试代理演示了如何构建人工智能驱动的系统,将自然语言测试指令转换为可执行的端到端 Web 测试。该系统使用 LangGraph 进行工作流程编排,使用 Playwright 进行浏览器自动化,使用户能够用简单的英语指定测试用例,同时处理测试生成和执行的复杂性。

实施🛠️

使用 LangGraph 实现结构化工作流程来协调测试生成、验证和执行。该系统具有 TypedDict 状态管理、与 Playwright 集成以实现浏览器自动化,以及基于LLM的代码生成功能,用于将自然语言指令转换为可执行测试脚本。该实现包括 DOM 状态分析、错误处理和综合测试报告。

15 GIF 动画生成器代理 (LangGraph)

概览🔎

一个 GIF 动画生成器,集成了用于工作流程管理的 LangGraph、用于文本生成的 GPT-4 和用于图像创建的 DALL-E,根据用户提示生成自定义动画。

实施🛠️

利用 LangGraph 编排工作流程,使用 GPT-4 生成角色描述、情节和图像提示,使用 DALL-E 3 创建图像,并使用 PIL 将它们组装成 GIF。采用异步编程实现高效的并行处理。

16 TTS 诗歌生成器代理 (LangGraph)

概览🔎

使用 LangGraph 和 OpenAI 的 API 的高级文本转语音 (TTS) 代理对输入文本进行分类,根据内容类型对其进行处理,并生成相应的语音输出。

实施🛠️

利用 LangGraph 编排工作流程,使用 GPT 模型对输入文本进行分类,应用特定于内容的处理,并使用 OpenAI 的 TTS API 将处理后的文本转换为语音。系统根据识别的内容类型(一般、诗歌、新闻或笑话)调整其输出。

17 音乐作曲家代理 (LangGraph)

概览🔎

使用 LangGraph 和 OpenAI 语言模型的 AI 音乐合成器可根据用户输入生成自定义音乐作品。系统通过专门的组件处理输入,每个组件都会生成最终的音乐作品,然后将其转换为可播放的 MIDI 文件。

实施🛠️

LangGraph 编排了一个工作流程,将用户输入转换为音乐作品,使用 ChatOpenAI (GPT-4) 生成旋律、和声和节奏,然后进行风格调整。最终的 AI 生成的作品使用 music21 转换为 MIDI 文件,并且可以使用 pygame 进行播放。

18 内容智能:多平台内容生成代理

概览🔎

内容智能演示了如何构建先进的内容生成系统,将输入文本转换为跨多个社交媒体渠道的平台优化内容。该系统采用 LangGraph 进行工作流程编排,以分析内容、进行研究并生成定制内容,同时保持不同平台上的品牌一致性。

实施🛠️

使用 LangGraph 实现复杂的工作流程,以在内容生成过程中协调多个专用节点(摘要、研究、特定于平台)。该系统具有用于状态管理的 TypedDict 和 Pydantic 模型、与 Tavily Search 的集成以增强研究能力,以及使用 GPT-4 生成特定于平台的内容。该实施包括多个平台的并行处理和可定制的内容模板。

19 使用 LangGraph 和 Memegen 的商业 Meme 生成器.link

概览🔎

商业模因生成器演示了如何创建一个人工智能驱动的系统,该系统根据公司网站分析生成上下文相关的模因。该系统使用 LangGraph 进行工作流程编排,结合了 Groq 的 Llama 模型进行文本分析和 Memegen.link API,自动生成用于数字营销的品牌对齐模因。

实施🛠️

使用 LangGraph 实现状态管理工作流程来协调网站内容分析、模因概念生成和图像创建。该系统具有用于数据验证的 Pydantic 模型、aiohttp 的异步处理以及与外部 API(Groq、Memegen.link)的集成,以创建具有可定制模板的完整 meme 生成管道。

20 LLM特工的谋杀之谜游戏

概览🔎

一款基于文本的侦探游戏,利用自主LLM代理作为程序生成的谋杀之谜中的互动角色。系统从 UNBOUNDED 论文中汲取灵感,每次都会创建独特的场景,玩家扮演福尔摩斯的角色,通过人物访谈和演绎推理来解决案件。

实施🛠️

利用两个 LangGraph 工作流程 - 用于故事/角色生成和游戏进程的主游戏循环,以及用于角色交互的对话子图。该系统结合了LLM驱动的叙事生成、角色人工智能和结构化游戏机制,通过可重玩的故事情节创造身临其境的调查体验。

21 记忆增强对话代理

概览🔎

记忆增强型对话人工智能代理结合了短期和长期记忆系统,可以在对话中和多个会话中维护上下文,从而提高交互质量和个性化。

实施🛠️

将语言模型与单独的短期和长期记忆存储集成,利用包含两种记忆类型的提示模板,并使用内存管理器进行存储和检索。该系统包括一个交互循环,用于更新和利用每个响应的记忆。

22 多Agent协作系统

概览🔎

多智能体协作系统,将历史研究与数据分析相结合,利用大型语言模型来模拟专业智能体协同工作来回答复杂的历史问题。

实施🛠️

利用代理基类创建专门的 HistoryResearchAgent 和 DataAnalysisAgent,由 HistoryDataCollaborationSystem 编排。该系统遵循五个步骤:历史背景提供、数据需求识别、历史数据提供、数据分析和最终综合。

23 自我提升剂

概览🔎

使用 LangChain 的自我改进智能体参与对话,从交互中学习,并通过反思和适应不断提高其性能。

实施🛠️

将语言模型与聊天历史管理、响应生成和反射机制集成。该系统采用学习系统,结合反思的见解来提高未来的绩效,从而创建一个持续改进的循环。

24.面向任务的Agent

概览🔎

使用 LangChain 的语言模型应用程序,可汇总文本并将摘要翻译为西班牙语,结合自定义函数、结构化工具和高效文本处理代理。

实施🛠️

利用自定义函数进行摘要和翻译,包装为结构化工具。采用提示模板来指导代理,协调工具的使用。代理执行者管理该过程,获取输入文本并生成英文摘要及其西班牙语翻译。

25 互联网搜索和总结代理

概览🔎

智能网络研究助手,将网络搜索功能与人工智能驱动的摘要相结合,自动执行从互联网收集信息并将其提炼成简洁、相关的摘要的过程。

实施🛠️

使用 DuckDuckGo 的 API 集成网络搜索模块、结果解析器和利用 OpenAI 语言模型的文本摘要引擎。该系统执行特定站点或一般搜索,提取相关内容,生成简明摘要,并编译属性结果以进行有效的信息检索和合成。

26 多智能体研究团队 - Autogen

概览🔎

该技术探索了使用 AutoGen 库进行协作研究的多智能体系统。它采用代理来协作解决任务,注重高效执行和质量保证。该系统通过在专业代理之间分配任务来加强研究。

实施🛠️

使用 GPT-4 模型为代理配置特定角色,包括管理员、开发人员、规划人员、执行人员和质量保证人员。交互管理确保通过定义的转换进行有序通信。任务执行涉及协作规划、编码、执行和质量检查,展示了适用于各个领域的可扩展框架。

27 销售拜访分析器

概览🔎

一种智能系统,通过将音频转录与先进的自然语言处理相结合,自动分析销售电话录音。该分析器使用 OpenAI 的 Whisper 转录音频,使用 NLP 技术处理文本,并生成全面的报告,包括情绪分析、关键短语、痛点和可操作的建议,以提高销售业绩。

实施🛠️

在结构化工作流程中利用多个组件:用于音频转录的 OpenAI Whisper、用于任务自动化和代理管理的 CrewAI、以及用于编排分析管道的 LangChain。该系统通过从转录到详细分析的一系列步骤处理音频,利用自定义代理和任务生成结构化 JSON 报告,其中包含有关客户情绪、销售机会和建议改进的见解。

28 气象应急响应系统

概览🔎

一个综合系统,展示了两种用于天气应急响应的代理图实现:处理实时天气数据的实时图,以及结合真实和模拟数据以测试高严重性场景的混合图。该系统处理从数据收集到应急计划生成的完整工作流程,并具有自动通知和人工验证步骤。

实施🛠️

利用 LangGraph 通过状态管理来编排复杂的工作流程,集成 OpenWeatherMap API 来获取实时数据,并使用 Gemini 来进行分析和响应生成。该系统结合了电子邮件通知、社交媒体监控模拟和基于严重性的路由,以及针对低/中严重性事件的可配置人工验证。

29 自愈代码库系统

概览🔎

一个智能系统,使用 LangGraph 工作流程编排和 ChromaDB 矢量存储自动检测、诊断和修复运行时代码错误。该系统通过向量嵌入来维护遇到的错误及其修复的记忆,从而能够对代码库中的类似错误进行模式识别。实施🛠️

利用基于状态的图形工作流程,通过专门的节点处理函数定义和运行时参数,以进行错误检测、代码分析和修复生成。合并 ChromaDB,用于基于矢量的错误模式和修复存储,并具有针对类似错误模式的自动搜索和检索功能,同时通过结构化验证步骤保持代码执行安全。

30 DataScribe:人工智能驱动的架构浏览器

概览🔎

智能代理系统,能够通过自然语言交互直观地探索和查询关系数据库。该系统利用一组由状态主管协调的专门代理来处理模式发现、查询规划和数据分析任务,同时通过基于向量的关系图保持上下文理解。

实施🛠️

利用 LangGraph 编排多代理工作流程,包括发现、推理和规划代理,并使用 NetworkX 进行关系图可视化和管理。该系统通过 TypedDict 类合并动态状态管理,使用 db_graph 属性维护会话之间的数据库上下文,并包括防止未经授权的数据库修改的安全措施。

31 新闻 使用 LangGraph

概览🔎

新闻摘要系统,可根据用户查询生成当前事件的简明 TL;DR 摘要。该系统利用大型语言模型进行决策和摘要,同时与新闻 API 集成以访问最新内容,使用户能够通过生成的要点摘要快速了解感兴趣的主题。

实施🛠️

利用 LangGraph 编排组合多个组件的工作流程:GPT-4o-mini 用于生成搜索词和文章摘要、NewsAPI 用于检索文章元数据、BeautifulSoup 用于网页抓取文章内容以及 Asyncio 用于并发处理。该系统遵循从查询处理到文章选择和摘要的结构化管道,管理组件之间的流程以生成当前新闻文章的相关 。

32 AInsight:AI/ML 每周新闻记者

概览🔎

AInsight演示了如何使用多代理架构构建智能新闻聚合和摘要系统。该系统采用三个专门的代理(NewsSearcher、Summarizer、Publisher),通过基于 LangGraph 的工作流程编排为普通受众自动收集、处理和总结 AI/ML 新闻。

实施🛠️

使用 LangGraph 实现状态管理的多代理系统来协调新闻收集 (Tavily API)、技术内容摘要 (GPT-4) 和报告生成过程。该系统具有模块化架构,具有基于 TypedDict 的状态管理、外部 API 集成以及带有可自定义模板的 Markdown 报告生成功能。

33 专注于新闻业的人工智能助手

概览🔎

专业的人工智能助手,帮助记者应对现代新闻挑战,如错误信息、偏见和信息过载。该系统集成了事实检查、语气分析、摘要和语法审查工具,以提高新闻工作的准确性和效率,同时保持道德报道标准。

实施🛠️

利用 LangGraph 编排专用组件的工作流程,包括用于分析和生成的语言模型、通过 DuckDuckGo 的 API 进行的 Web 搜索集成、PyMuPDFLoader 和 WebBaseLoader 等文档解析工具、使用 RecursiveCharacterTextSplitter 进行文本分割以及结构化 JSON 输出。每个组件通过统一的工作流程协同工作,以分析内容、验证事实、检测偏见、提取报价并生成综合报告。

34 博客作家(开放 AI Swarm)

概览🔎

使用 OpenAI 的 Swarm 包进行协作博客文章创建的多代理系统。它利用专门的代理来有效地执行研究、规划、写作和编辑任务。

实施🛠️

利用 OpenAI 的 Swarm Package 来管理代理交互。包括管理员、研究员、规划者、作家和编辑,每个人都有特定的角色。该系统遵循结构化的工作流程:主题设置、提纲、研究、起草和编辑。这种方法通过任务分配、专业化和协作解决问题来增强内容创建。

35 播客互联网搜索和生成代理🎙️

概览🔎

两步代理,首先在互联网上搜索给定主题,然后根据找到的主题生成播客。搜索步骤使用搜索代理和搜索功能来查找最相关的信息。第二步使用播客生成代理和生成函数来创建有关找到的主题的播客。

实施🛠️

利用 LangGraph 编排两步工作流程。第一步涉及搜索代理和从互联网收集信息的功能。第二步使用播客生成代理和函数根据收集的信息创建播客。

36 ShopGenie - 重新定义在线购物客户体验

概览🔎

人工智能驱动的购物助手,即使没有领域专业知识,也可以帮助客户做出明智的购买决策。该系统分析来自多个来源的产品信息,比较规格和评论,根据用户需求确定最佳选择,并通过电子邮件提供建议并支持视频评论,打造全面的购物体验。

实施🛠️

使用 LangGraph 编排工作流程,结合用于网络搜索的 Tavily、用于结构化数据分析和产品比较的 Llama-3.1-70B 以及用于评论视频检索的 YouTube API。该系统通过模式映射、产品比较、评论识别和电子邮件生成等多个节点处理搜索结果。主要功能包括用于一致数据处理的结构化 Pydantic 模型、用于稳健 API 交互的重试机制以及通过 SMTP 发送电子邮件以共享建议。

37 购车人工智能代理

概览🔎

智能产品买家人工智能代理演示了如何构建智能系统来帮助用户做出明智的购买决策。该系统使用 LangGraph 和基于LLM情报来处理用户需求,从 AutoTrader 等网站上抓取产品列表,并提供详细的汽车购买分析和建议。

实施🛠️

使用 LangGraph 实现基于状态的工作流程来协调用户交互、网络抓取和决策支持。该系统具有 TypedDict 状态管理、Playwright 异步网络抓取功能,并与外部 API 集成以进行全面的产品分析。该实施包括用于实时聊天交互的 Gradio 界面和用于轻松扩展到其他产品类别的模块化抓取架构。

38 Taskifier - 智能任务分配和管理

概览🔎

一种智能任务管理系统,可以分析用户的工作方式并创建个性化的任务分解策略,该系统源于对学生和早期职业专业人员的任务模糊性造成的拖延现象的观察。该系统评估历史工作模式,通过网络搜索收集相关任务信息,并生成定制的分步方法来优化生产力并减少工作流程瘫痪。

实施🛠️

利用 LangGraph 编排多步骤工作流程,包括工作风格分析、通过 Tavily API 收集信息以及定制计划生成。系统在整个过程中维护状态,将历史工作模式数据与新的任务研究相结合,输出符合用户自然工作风格的详细、个性化的任务执行计划。

39 杂货管理代理系统

概览🔎

使用 CrewAI 构建的多代理系统,可自动执行杂货管理任务,包括收据解释、有效期跟踪、库存管理和食谱推荐。该系统使用专门的代理从收据中提取数据、估计产品保质期、跟踪消耗情况并提出食谱建议以尽量减少食物浪费。

实施🛠️

使用 CrewAI 实现四个专业代理:一个从收据中提取商品详细信息的收据解释器、一个使用在线资源确定保质期的到期日期估算器、一个根据消耗情况维护库存的杂货跟踪器,以及一个使用可用食材建议膳食的食谱推荐器。每个代理都有通过工作人员工作流程精心安排的特定工具和任务。

40 基于 LangGraph 的系统检查器

概览🔎

一款针对基于 LangGraph 的应用程序的综合测试和验证工具,可自动分析系统架构、生成测试用例并通过多代理检查识别潜在漏洞。检查员雇用专门的人工智能测试人员来评估系统的不同方面,从基本功能到安全问题和边缘情况。

实施🛠️

集成用于工作流程编排的 LangGraph、多个LLM支持的测试代理以及包括静态分析、测试用例生成和结果验证的结构化评估管道。该系统使用 Pydantic 进行数据验证,使用 NetworkX 进行图形表示,并实现模块化架构,允许并行测试执行和全面的结果分析。

41欧盟绿色协议常见问题解答机器人

概览🔎

欧盟绿色协议常见问题机器人演示了如何构建基于 RAG 的人工智能代理,帮助企业了解欧盟绿色协议政策。该系统将复杂的监管文件处理成可管理的块,并为有关环境合规性、排放报告和废物管理要求的常见问题提供即时、准确的答案。

实施🛠️

使用用于文档存储的 FAISS 矢量存储、用于预处理的语义分块以及用于查询处理的多个专用代理(检索器、摘要器、评估器)来实现复杂的 RAG 管道。该系统具有查询改写功能以提高准确性,与黄金问答数据集交叉引用以验证答案,以及综合评估指标以确保响应质量和相关性。

42 系统审稿自动化系统+论文草稿创建

概览🔎

一个使用有向图架构和 LangChain 组件来自动化学术系统评论的综合系统。该系统生成完整的、可立即发表的系统综述论文,自动处理从文献检索到最终草稿生成的所有内容,并具有多个修订周期。

实施🛠️

利用基于状态的图形工作流程处理论文搜索和选择(最多 3 篇论文)、PDF 处理,并生成包含所有标准部分(摘要、引言、方法、结果、结论、参考文献)的完整学术论文。该系统将多个修订周期与自动批评和改进阶段结合在一起,所有这些都通过 LangGraph 状态管理进行协调。

43 用于复杂 RAG 任务的复杂可控代理 🤖

概览🔎

一种先进的 RAG 解决方案,旨在解决简单的基于语义相似性的检索无法解决的复杂问题。这种方法使用复杂的确定性图作为高度可控的自主代理的“大脑”🧠,能够根据您自己的数据回答重要的问题。

实施🛠️

• 实施多步骤流程,包括问题匿名化、高层规划、任务分解、自适应信息检索和问答、持续重新规划以及严格的答案验证,以确保答复有依据且准确。

项目链接

https://github.com/NirDiamant/GenAI_Agents

****/ 02 /******

客户代理:多领域重塑用户交互体验与服务生态

1、零售和消费品

在Google Vertex AI平台*(机器学习平台及AI开发和运营平台)*,巴西零售商Magalu创建了交互式对话3D机器人Lu’s Brain。电商Mercado Libre在APP中加入了语义搜索,改善了拉丁美洲2亿消费者的体验。

今年夏天,家电零售企业Best Buy推出AI助手,以解决产品问题、重新安排订单交付、管理电脑维修服务商Geek Squad的订阅等。

2、汽车与物流

搬家公司PODS与广告公司Tombras合作,利用Gemini模型打造了智能车身广告牌,这种广告牌的特别之处在于“善变”,它能在卡车穿梭纽约市街区时实时变化,自主拟定标题。该广告牌在短短29小时内覆盖了299个街区,创造了6000多个独特的标题。

大众汽车基于Gemini模型的能力,在其myVW APP中加入了AI助手,回答例如“如何更换爆胎”或“数字驾驶舱指示灯是什么意思”等问题。用户还可以使用手机摄像头对准仪表板,查阅指示灯上的有用信息。

3、医疗健康

通过Google Vertex AI平台,专注于护理自闭症患者的Genial Care优化了对非典型自闭症患者的治疗记录效率,使护理人员能够全面监控患者治疗情况。Bennie Health则创建了员工健康福利管理系统,AI提供见解并简化数据管理,目前其平台已包含35项职业发展活动。

4、金融服务

使用Gemini模型和Google Vertex AI平台,小额贷款平台Fundwell利用能够更好地分析客户财务状况,为企业匹配理想的融资解决方案。丰业银行和ING银行都为银行客户创建了AI聊天机器人,应对客户查询的问题,优化客户自助办理的体验。

5、公共部门和非营利组织

为移民提供司法正义相关服务的组织Justicia Lab正在开发AI助手,帮助查询法规流程;通过上传法律信函来AI提取信息,获得个性化的指导。

多语言融合的佩珀代因大学,借助Gemini模型,学生和教职员工会可以借助实时翻译来交流。

6、制造、工业和电子

AI手机时代,Google加入竞争。三星Galaxy S24、摩托罗拉Moto AI、OPPO OnePlus都在手机中部署了Gemini模型和Imagen,都提升了对话摘要、图像创建和自然语言搜索等功能。

园艺护理平台ScottsMiracle-Gro在Google Vertex AI平台上构建了AI代理,为消费者提供量身定制的园艺建议和产品推荐。

7、媒体、营销和游戏

使用Gemini模型的多模式搜索,营销平台Globant可以找到他们想要的视频内容,访问视频的特定帧,节省运营时间和成本,从而提高内容货币化。

基于Gemini模型,电动方程式赛车比赛可以将两小时的解说,转写成任何语言的两分钟播客,其中包含车手数据和正在进行的赛季情况。金州勇士队正在使用AI来改善其APP中的球迷体验内容。

8、酒店与旅游

酒店搜索平台Trivago基于Google支持的高级文本搜索功能,允许用户使用自然语言搜索酒店。旅游业最全面的AI工具之一Trip Intelligence套件,它基于AI开发了30多项简化旅行计划和预订流程的新功能。

基于Google Vertex AI平台,Mustard开发了专属APP,使用专有的计算机视觉和AI技术,为高尔夫球手和棒球投手提供的个性化指导体验。健身器材公司Technogym推出了AI驱动的虚拟教练Technogym Coach,帮助用户创建高度个性化的健身计划。

9、科技

软件公司BMC将Google Vertex AI平台和Llama 3.1的功能引入其BMC Helix平台,提高了对话式AI和AIOps建议的准确性。基于Gemini、Claude、Llama、Large 2模型,AI初创Quora开发了AI聊天机器人Poe,并将其托管在Google的AI基础架构上。

印度尼西亚超级应用Gojek推出了印尼语AI语音助手Dira by GoTo AI,可让客户使用语音命令来完成账单支付和汇款等任务。

其他场景:电信、商业与专业服务

****/ 03 /******

雇员代理:提升企业人力效能与运营活力

1、金融服务

花旗将利用Google Cloud的Google Vertex AI平台平台在整个公司范围内提供生成性AI功能,推动与开发人员工具包、文档处理和数字化功能相关的生成性AI计划,以增强客户服务团队的能力。

基于Google分析引擎BigQuery和Vertex AI平台,金融服务公司Hiscox为保险公司创建了第一个AI增强型主承保模型,使复杂风险的报价流程加速,从三天缩短到几分钟。索赔公司Loadsure利用Google Document AI自动处理保险索赔,实现近乎实时的解决索赔。

2、医疗健康

马克·库班的Cost Plus Drugs使用Gemini来开发Google Workspace,例如Gmail中的AI功能使员工每周可节省5个小时。Gemini还通过使用AI转录和自动格式化制药实验室结果,以及FDA合规文档。

CytoReason使用AI创建计算疾病模型,逐个组织、逐个细胞地绘制人类疾病图谱,帮助制药公司缩短临床试验时间并降低药物开发的高成本,将查询时间从两分钟缩短到10秒。

巴西最大的血库Hemominas与Xertica合作开发了一款全渠道聊天机器人,用于搜索和安排献血者,简化流程并提高效率。该AI解决方案有望通过吸引更多献血者和优化血液供应管理,每年挽救50万人的生命。

3、制造与工业

德国的光伏租赁公司Enpal与Google Cloud合作伙伴Dida合作,实现了部分太阳能电池板销售流程的自动化。通过自动为潜在太阳能电池板客户生成报价,包括评估屋顶大小和所需电池板数量,Enpal将所需时间缩短了87.5%,从120分钟缩短至15分钟。

意大利低碳能源公司Plenitude利用Google Clou的光学字符识别,还有Gemini Flash模型,从能源账单中提取数据,并使用Document AI验证身份。这加快了入职速度、减少了欺诈行为,并显著节省了身份验证时间。

4、公共部门和非营利组织

美国空军建立了一个新的概念验证门户,用于搜索、浏览和阅读电子出版的PDF——所有这些都在90天的期限内完成,利用了预先构建的工具和Google Vertex AI平台Search and Conversation的速度。

美国退伍军人事务部正在使用边缘AI来改善现役军人和退伍军人的癌症检测,增强现实显微镜*(ARM)*部署在世界各地的远程军事治疗设施中,帮助病理学家更快、更准确地发现癌症。

5、媒体、营销和游戏

汤森路透将Gemini Pro添加到其经批准供员工使用的大型语言模型套件中,凭借其200万个标记上下文窗口,Gemini使某些任务的处理速度提高了10倍,并且可以根据上下文处理整个文档。

华纳兄弟探索频道使用Google Vertex AI平台构建了一款AI字幕工具,总体成本降低了50%,并且在不使用机器学习的情况下将手动为文件添加字幕所需的时间缩短了80%。

6、零售和消费品

家得宝*(Home Depot)*开发了一款名为Sidekick的APP,帮助店员管理库存并保持货架库存,视觉模型可以帮助店员确定应采取的行动的优先顺序。

7、电信

贝尔加拿大公司为其企业客户构建了可定制的联络中心解决方案,提供AI客服人员来接听来电,并提供客服助手,当人工客服人员在线时,客服助手会倾听来电,提供建议和情绪分析。AI为客户运营节省了2000万美元。

TELUS已在整个组织内普及了AI的使用,创建了一个内置隐私和安全控制的内部AI工具沙盒。无论是分析复杂的报告和法律文件、改进现场操作还是解决IT问题,超过50000名TELUS团队成员经常在日常工作中使用AI,报告显示每个流程平均节省了40分钟。

8、商业与专业服务

商业研究和情报服务公司Dun & Bradstreet与Gemini合作开发了一款电子邮件生成工具,帮助卖家为其研究服务中的潜在客户和客户创建定制的个性化沟通。该公司还开发了智能搜索功能,帮助用户解决复杂的查询,例如“找出该地区所有ESG评级较高的公司”。

Monks使用Gemini帮助Hatch构建个性化广告系列。与其他广告系列相比,该广告系列的点击率提高了80%,网站访客参与度提高了46%,每次购买成本降低了31%。

9、汽车与物流

704 Apps创建了服务于最后一英里交通领域的APP,每天连接数千名司机和乘客。在旅途中,车内乘客之间的对话音频内容被发送到Gemini,用于测量情绪“温度”。该工具可以将“抢劫”、“袭击”、“绑架”等特定词语归类为敌意,从而生成警报以预测危险情况的发生。

自动驾驶汽车软件开发商Oxa使用Gemini for Google Workspace构建用于指标报告的广告系列模板、撰写社交帖子以提高营销流程效率、创建职位描述以及校对所有团队的内容,从而节省时间和资源。

10、科技

Box集成了Google Vertex AI平台,构建新一代AI功能,帮助客户更高效地处理和分析存储在Box Content Cloud中的数据,包括基于深度学习的恶意软件检测、异常活动的及时警报以及可自动保护数据的内容分类。

Clodura.ai使用Google Vertex AI平台构建了一个销售副驾驶,可以分析组织数据来帮助B2B卖家完成交易;Google Vertex平台将技术债务减少了71%,APP交付速度提高了12倍,并带来了显著的客户增长。

其他场景:酒店与旅游

****/ 04 /******

创意代理:个性化广告与生成式视频

1、零售和消费品

基于Google Vertex AI平台,家乐福的营销人员只需点击几下,就可以构建个性化的广告系列,并快速跨社交网络创建专属的动态广告系列。Adore Me则借助AI的能力,在一小时内完成了差异化的产品描述,大大简化了原本需要每月花费30-40小时的工作。

雅诗兰黛公司利用Gemini模型等,支持其语言助手Ella,增添了生成各种创意内容、翻译语言并总结会议的功能。基于开源架构LangChain和Google的计算托管平台Cloud Run,欧莱雅开发了一款含有文生图功能的AI代理,这款AI代理帮助公司简化了创作流程。

2、媒体、营销和游戏

Canva正在使用Google Vertex AI平台为其Magic Design for Video提供支持,帮助用户跳过繁琐的编辑步骤,同时在几秒钟内创建可共享且引人入胜的视频。

Lightricks开发内容创作工具,包括其旗舰产品Facetune2、Videoleap和Photoleap。利用Google Cloud TPU v5p的性能和充足的内存容量,Lightricks成功训练了其生成式文本转视频模型,而不会影响用户体验。

其他场景:科技、公共部门和非营利组织、酒店与旅游

****/ 05 /******

数据代理:挖掘数据价值深度,提升决策力

1、商业与专业服务

Glean以Google Vertex AI平台和BigQuery为基础,在企业内部使用的所有工作场所APP、网站和数据源中提供强大、统一的企业搜索,帮助用户准确找到所需内容并发现完成最佳工作所需的信息。

Ipsos为其市场研究团队构建了一款数据分析工具,从而无需向数据分析师提出耗时的请求,该工具由Gemini 1.5 Pro和Flash模型以及Grounding with Google Search提供支持,以提高同时期搜索信息的实际准确性。

2、科技

Birdie.ai专注于客户反馈分析,为公司提供切实可行的见解。借助Gemini 1.5 Flash和Google Vertex AI平台,Birdie的模型准确率提高了9%,达到96%的准确率,同时将处理单位成本降低了15%。

博世SDS使用Google Cloud Kubernetes、BigQuery和Firebase来管理和扩展解决方案、构建基于AI的认知引擎并提供实时警报,从而将能源成本降低了12%,提高了室内舒适度,并更好地利用了可再生能源。

fileAI利用专有AI自动将任何文件端到端处理直接输入任何系统,无需人工干预。fileAI的AI工作流专为财务、物流和保险团队打造,可在90%的时间内解锁非结构化数据,为用户节省高达80%的成本。

3、公共部门和非营利组织

Full Fact是一家总部位于英国的非营利组织,其在18个国家开展工作以打击虚假信息,目前正在使用AI主动监控报道,以便其30个事实核查合作组织可以专注于处理特定的主张和有害信息。

Materiom是一家研究零浪费、生物基塑料等化石燃料产品替代品的初创公司,该公司正在开发一种AI工具,使企业家能够开发具有广泛应用的新型可堆肥材料;AI提供更快的研究和信息收集,以加快开发过程。

OroraTech是一家太空野火探测公司,利用Google Cloud的全球基础设施和Google Vertex AI平台来提高其野火解决方案的速度和准确性。该解决方案可帮助全球客户监测森林、及早发现野火并保护超过160万平方公里的森林。

小行星研究所正在利用AI在现有的天文数据中发现隐藏的小行星。对于研究太阳系演化的天文学家、希望执行小行星飞行任务的投资者和企业,以及我们所有希望防止未来大型小行星撞击地球的人来说,这是一个主要关注点。

4、医疗健康

舍巴医疗中心的ARC Innovation正在使用Google Cloud的AI工具*(包括Looker Studio和BigQuery ML)*来创建医疗保健解决方案,以改善卵巢癌治疗期间的关键临床决策。

动物保健领域的领导者Elanco已实施了一套支持关键业务流程*(如药物警戒、客户订单和临床洞察)*的通用AI框架。该框架由Google Vertex AI平台和Gemini提供支持,自去年推出以来,预计投资回报率为190万美元。

Fairtility正在利用Google Cloud的AI功能来提高全球IVF的效果。通过利用Google Cloud中的AI和机器学习,Fairtility可以分析胚胎图像和相关数据,以识别最有可能成功植入的胚胎,从而提高接受IVF的患者的怀孕可能性。

Superluminal Medicines利用Google Cloud的计算能力来分析多种蛋白质结构并将其整合到动态蛋白质模型中以进行药物发现,从而可以更准确地表示蛋白质行为并设计更精准的药物干预措施。

5、制造与工业

拜耳作物科学公司开发了Climate FieldView,这是一个综合农业平台,拥有超过250个数据层和数十亿个数据点;AI支持的建议让农民能够设计和监控他们的田地,以提高产量和提高施肥效率,同时还能减少碳排放。

北欧能源传输供应商Elia Group正在使用Google Vertex AI平台构建“eCO2grid”,测量和预测其发电的二氧化碳强度,旨在减少温室气体排放。

Zebra Technologies是一家行业专用移动计算设备制造商,它正在使用Gemini提供设备上的AI功能,以推动工作和客户体验,包括为零售员工提供高级分析和AI驱动的洞察,以便他们能够做出即时决策,防止库存不足或库存收缩。

6、金融服务

意大利最大的保险公司Generali Italia使用Google Vertex AI平台构建模型评估流程,帮助ML团队快速评估性能并部署模型。

Intesa Sanpaolo利用数据分析和AI建立了民主数据实验室,使其风险管理团队能够跟上现代金融市场的快速变化和复杂性。通过实现数据访问的民主化,民主数据实验室正在授权银行其他部门对风险进行更多的监督和控制。

领先的市场指数和数据发布者MSCI利用Google Vertex AI平台、BigQuery和Cloud Run进行机器学习来丰富其数据集,帮助客户洞察大约100万个资产位置,以帮助管理与气候相关的风险。

Snowdrop利用Google Cloud的AI和地理空间数据*(包括Google Places和Google Vertex AI平台)*丰富金融机构的交易数据。这种自动化技术使数据准确性提高了40%,商家与交易的匹配率提高了15%,并且每月能够处理超过21亿笔交易,同时实现全球扩展。

7、汽车与物流

宝马集团与Monkeyway合作开发了AI解决方案SORDI.ai,利用生成式AI优化工业规划流程和供应链。这涉及扫描资产并使用Google Vertex AI平台创建3D模型,这些模型充当数字孪生,执行数千次模拟以优化配送效率。

Geotab是远程信息处理领域的全球领导者,它使用BigQuery和Google Vertex AI平台每天分析来自460多万辆汽车的数十亿个数据点。这为车队优化、驾驶员安全、交通脱碳和宏观交通分析提供了实时洞察,从而推动城市更加安全和可持续。

Prewave是一个供应链风险情报平台,它利用Google Cloud的AI服务为企业提供端到端风险监控和ESG风险检测。这使公司能够深入了解其供应链,确保弹性、可持续性和遵守欧洲CSDDD等法规。

Woven是丰田对未来移动出行的投资,它正与Google合作,利用大量数据和AI实现自动驾驶,并由Google云的AI超级计算机上的数千个机器学习工作负载提供支持。这为支持自动驾驶节省了50%的总拥有成本。

其他场景:媒体、营销和游戏、零售和消费品

****/ 06 /******

代码代理:革新软件开发流程

1、金融服务

Regnology使用Gemini 1.5 Pro构建了其Ticket-to-Code Writer工具,以自动将错误票转换为可操作的代码,从而大大简化了软件开发流程。

ROSHN集团正在使用Gemini Code Assist和Cloud Assist来提高其独特的房地产购物网站和APP工程师的工作效率;推出后不久,他们就注册了45,000名新用户并以数字方式完成了9,400笔购买。

2、科技

accessiBe开发技术解决方案,帮助企业尽最大努力解决网络无障碍问题。Google的AI帮助accessiBe简化其开发流程,将部署时间缩短5倍。accessiBe的解决方案accessWidget和accessFlow在100%无服务器环境中运行,并提高了23,000多个商业网站的无障碍性。

Labelbox已构建完全托管的AI模型评估解决方案,该解决方案直接集成到Google Vertex AI平台平台中,使Google Cloud用户能够无缝启动人工评估作业并设置特定的评估标准,例如问答和总结;这简化并加速了部署具有更高信任度和权威性的人机交互AI系统的能力。

诺基亚利用Google Cloud的Google Vertex AI平台和Gemini 1.5 Pro来增强其网络即代码平台,使开发人员能够利用丰富的AI功能更快地创建5G APP。此次合作针对各个行业,从医疗保健开始,旨在改善远程医疗体验并促进Google Cloud开发者社区的创新。

AI应用开发公司Snorkel AI使用Google Cloud部署了Snorkel Flow,这是一个以数据为中心的平台,可将AI应用开发速度提高100倍。该平台通过缩短AI开发时间、在几分钟内标记数据以及无需手动重新标记即可适应数据变化,使AI开发变得简单。

Wayfair试用了Code Assist,使用代码代理的开发人员能够比以前快55%地设置他们的环境,单元测试期间的代码性能提高了48%,60%的开发人员报告说他们能够专注于更令人满意的工作。

其他场景:医疗健康、零售和消费品、商业与专业服务

****/ 07 /******

安全代理:准确检测威胁,保障云端安全

1、金融服务

**
**

BBVA使用Google SecOps中的AI来更准确、更快速、更大规模地检测、调查和应对安全威胁。该平台现在可以在几秒钟内显示关键安全数据,而以前需要几分钟甚至几小时,并且可以提供高度自动化的响应。

金融服务技术开发商Fiserv现在可以利用安全运营平台中的Gemini更快地总结威胁、找到答案并检测、验证和响应安全事件。

2、科技

机密计算领域的领导者Anjuna Security正在与Google Cloud合作,以实现企业AI工作负载在云端的安全可靠使用。该解决方案利用采用Intel TDX技术的C3机器上的机密虚拟机,确保数据、代码和模型始终受到保护,从而消除未经授权的访问和篡改风险。

NetRise开发了Trace,通过引入AI驱动的意图驱动搜索来提供软件供应链安全;这允许用户根据代码和配置背后的潜在动机或目的搜索他们的资产,而不是仅仅依靠基于签名的方法。

其他场景:零售和消费品、医疗健康

**
**

大模型和程序员的关系

(1)目前ChatGPT对程序员到底有哪些实质性的帮助?

第一点:Code Review ChatGPT能够理解代码,并针对代码给出针对性的建议和优化方案;

第二点:写测试用例、单元测试、集成测试等,这些ChatGPT都很擅长!

第三点:对线上问题的定位和分析 线上问题的各种疑难杂症,ChatGPT都能胜任!

第四点:SQL的翻译 实现两种数据库的SQL语言转换,比如将Oracle的SQL脚本转换成MySQL的SQL脚本。

(2)有了AI编程,还需要程序员吗?

第一,在冯诺依曼架构体系下,程序需要的是确定性计算;

第二,由于大模型本身的概率性,目前大模型生成的代码还具备一定的随意性和不确定性;

第三,目前大模型更擅长的是一些抽象层次比较低的工作,比如一段代码或一个算法的实现,写一个单元测试等等。而一些抽象层次比较高的工作,比如需求分析、架构设计、领域设计、架构选型等,这些工作反而是大模型不擅长的,而这些工作是比较具备有竞争力的,这恰恰是一些高级程序员以及系统架构师的价值所在。

(3)应用实践AIGC有几层境界?

第一层境界:简单对话; 通过ctrl-c/v出结果,人人都会。

第二层境界:系统掌握Prompt Engineering; 通过系统掌握好提示词工程,真正赋能工作提效。

第三层境界:将AIGC融入业务流程,指挥AIGC完成复杂的任务; 通过掌握AIGC的技能,并完成业务领域知识的深入结合。

第四层境界:拥有自己的大模型; 熟悉大模型的架构原理,通过开源大模型微调,最好能够拥有一定的行业数据壁垒。

第五层境界:参与设计训练大模型; 比如从事ChatGPT等研发工作。 目前,Edison还处于第二层即提示词工程,我们整理了很多针对SDLC(软件开发生命周期)过程中的经典场景的提示词模板来做提效。 那么,你处于哪一层呢?

(4)如何掌握AI大模型开发技能?

第一步:掌握开发AGI时代新应用程序的技能; 比如:大模型应用内核、LangChain开发框架、向量数据库等;

第二步:搞定开发企业级AI Agent的应用技能; 比如:AI Agent、大模型缓存、算力等;

第三步:驾驭开发企业级专有大模型的技能; 比如:RAG、微调等;

第四步:深入应用大模型技术成为开发大师; 比如:大模型预训练、LLMOps等;

大模型目前在人工智能领域可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习入门大模型,那么,如何入门大模型呢?

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!

*有需要完整版学习路线*,可以微信扫描下方二维码,立即免费领取!

在这里插入图片描述

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

图片

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

图片

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

图片

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

图片

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

图片

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

图片

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

图片

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

图片

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

图片

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

在这里插入图片描述

****如果这篇文章对你有所帮助,还请花费2秒的时间**点个赞+在看+分享,**让更多的人看到这篇文章,帮助他们走出误区。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值