Ollama+DeepSeek+RAGFLOW搭建自己专属安全大模型 自定义知识库让你的大模型更专业

总体效果:你可以创建属于自己的知识库,例如一些高质量的网络安全文章,大模型会对这些文章进行学习、总结,结合大模型自己已有知识基础,给出你想要的答案。当然远远不仅限于网络安全。

首先安装Ollma https://ollama.com/download 点击下载即可图片

代理速度太慢了可以点击这个链接

https://ghfast.top/https://github.com/ollama/ollama/releases/download/v0.5.7/OllamaSetup.exe

直接点击install安装即可

图片

安装之后终端输入ollama 如图表示安装成功

图片

配置环境变量 OLLAMA_HOST即本地端口 OLLAMA_MODELS 即存放大模型的文件夹

图片

去ollama官网下载deepseek https://ollama.com/search

图片

这里我用的是R1 进去之后 复制命令

图片

终端运行

ollama run deepseek-r1

图片

在下载过程中可能出现 一开始很快越到后面下载越慢的情况 可以按照以下步骤解决

1.键入 ctr+c 暂停下载。
2.重新粘贴命令 ,等待重新链接。

试了这么多次重要成功了

图片

就已经可以在终端输入提示词了

图片

然后安装docker 用来启动RAGFLOW

图片

正常安装重启即可

图片图片

配置docker镜像源

{
  "builder": {
    "gc": {
      "defaultKeepStorage": "20GB",
      "enabled": true
    }
  },
  "experimental": false,
  "registry-mirrors": [
    "https://registry.dockermirror.com/",
    "https://docker.mirrors.ustc.edu.cn"
  ]
}

使用git命令拉取ragflow (没有git命令可以下载安装 https://github.com/git-for-windows/git/releases/download/v2.47.1.windows.2/Git-2.47.1.2-64-bit.exe)

拉取的时候需要科学上网(clash) 设置git代理 然后拉取

git config --global http.proxy "http://127.0.0.1:7897"
git clone https://github.com/infiniflow/ragflow.git

图片

对ragflow/docker/.env文件做如下修改

图片

如果不修改的话就没有嵌入式模型 用起来就会比较麻烦 所以这里一定要修改

图片

进入ragflow/docker目录下 执行

docker-compose -f docker-compose.yml up -d

关闭命令
docker-compose -f docker-compose.yml stop

这个命令如果运行有问题 可能是本地没有hyper-v或者没有打开 参考这两篇文章

https://www.xitongzhijia.net/xtjc/20220102/237013.html
https://www.cnblogs.com/ZaraNet/p/11918807.html

docker compose的时候一直报错 所以修改了华为云

图片

RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow

图片

就拉取成功了

图片

#反正拉取不成功要么是hyper-v的问题、要么是镜像源的问题(docker的镜像源)、要么是RAGFLOW_IMAGE的问题(如上)

图片

启动成功后查看服务器状态

docker logs -f ragflow-server

输出如图启动成功图片

访问本地80端口 http://127.0.0.1/login

图片

访问http://127.0.0.1/user-setting/model 开始配置deepseek 选择ollama

图片

设置如下

图片

其中baseurl 是ipconfig中wlan的ip地址 我试过127.0.0.1/localhost都不行

图片

根据自己情况 配置一个嵌入式模型

图片

新建聊天助理 并进行自定义配置 可以选择你的知识库(即大模型要学习、参考的东西)或者说是数据集

图片

这里我举一个例子

图片

点击进行解析

图片

回到聊天配置

图片

也可以独自配置一下提示引擎图片

最终效果如下

图片

dn-1746154072197)]

回到聊天配置

[外链图片转存中…(img-z8owcoIz-1746154072197)]

也可以独自配置一下提示引擎[外链图片转存中…(img-f2FgOSqu-1746154072197)]

最终效果如下

[外链图片转存中…(img-kmiZSnrq-1746154072197)]

图片

如何学习AI大模型?

大模型的发展是当前人工智能时代科技进步的必然趋势,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。

那么,我们应该如何学习AI大模型?

对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。

它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。

这里就给大家免费分享一份 2025最新版全套大模型学习路线图,路线图包括了四个等级,带大家快速高效的从基础到高级!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值