公司要训练一个70B大模型,我快分裂了!

做大模型相关的项目,会有这样的情形:领导交给你一个任务,说我们要微调出一个 70B 的领域大模型,需要多少硬件资源,并且预估一下训练时间,xxx 你来列一个清单,我去汇报。

要回答这个问题,就需要弄明白 train 这个模型到底需要多少张 GPU 卡?今天我们就来聊聊:如何估计 LLM 的训练资源?

首先来看第一个问题,在大模型的过程中,占用显存的大头主要分为四部分:

  • 模型参数
  • 前向计算过程中产生的中间激活
  • 后向传递计算得到的梯度
  • 优化器状态

这里着重分析参数、梯度和优化器状态的显存占用,中间激活的显存占用后面会详细介绍。

训练大模型时通常会采用 AdamW 优化器,并用混合精度训练来加速训练,基于这个前提分析显存占用。

在一次训练迭代中,每个可训练模型参数都会对应 1 个梯度,并对应 2 个优化器状态(Adam 优化器梯度的一阶动量和二阶动量)。

设模型参数量为 Φ,那么梯度的元素数量为 Φ,AdamW 优化器的元素数量为 2Φ。float16 数据类型的元素占 2 个 bytes,float32 数据类型的元素占 4 个 bytes。

在混合精度训练中,会使用 float16 的模型参数进行前向传递和后向传递,计算得到 float16 的梯度;在优化器更新模型参数时,会使用 float32 的优化器状态、float32 的梯度、float32 的模型参数来更新模型参数。

因此,对于每个可训练模型参数,占用了:

img

所以,模型参数、梯度和优化器状态的显存占用为 20 Φ bytes。

除了模型参数、梯度、优化器状态外,占用显存的大头就是前向传递过程中计算得到的中间激活值了,需要保存中间激活以便在后向传递计算梯度时使用。

这里的激活指的是:前向传递过程中计算得到的,并在后向传递过程中需要用到的所有张量。

假设中间激活值是以 float16 或 bfloat16 数据格式来保存的,每个元素占了 2 个 bytes。

唯一例外的是,dropout 操作的 mask 矩阵,每个元素只占 1 个 bytes。在下面的分析中,单位是 bytes,而不是元素个数。

每个 transformer 层包含了一个 self-attention 块MLP 块,并分别对应了一个 layer normalization 连接。

先分析 self-attention 块的中间激活。self-attention 块的计算公式如下:

img

假设输入的形状是 [b,s,h],那么可以分为这几步来看:

img

因此,self-attention 块的中间激活占用显存大小为 11bsh+5s²α。

接下来看 MLP 块的中间激活。MLP 块的计算公式如下

img

其中:

  • 第一个线性层需要保存其输入,占用显存大小为 2bsh
  • 激活函数需要保存其输入,占用显存大小为 8bsh
  • 第二个线性层需要保存其输入,占用显存大小为 8bsh
  • 最后有一个 dropout 操作,需要保存 mask 矩阵,占用显存大小为 bsh

对于 MLP 块,需要保存的中间激活值为 19bsh,另外,self-attention 块和 MLP 块分别对应了一个 layer normalization。

每个 layer norm 需要保存其输入,大小为 2bsh,2 个 layer norm 需要保存的中间激活为 4bsh。

综上,每个 transformer 层需要保存的中间激活占用显存大小为 34bsh+5bs²α。

因此,对于 l 层 transformer 模型,中间激活占用的显存大小可以近似为(34bsh+5bs²α)*l。

最后,我们用一个实例来验证一下,以 GPT3 为例,我们来计算一下训练一个 GPT3 需要占用多少显存。

GPT3 的参数如下:

img

GPT3 的模型参数量为 175B,首先是模型参数、梯度和优化器状态的显存占用为 20 Φ bytes,即:

img

然后来看下中间激活占用的显存大小,GPT3 的序列长度 s 为 2048。

按 batch size 最小的来算,当 b=1 时:

img

所以总的显存是 350GB + 275GB=625GB。

我们用 Nvidia 的 A100 80GB 来算,需要用 625/80,约等于 8 张 GPU 卡,才能按最小资源把 GPT3 模型训练跑起来。

当 b=64 时:

img

同样用 A100 80GB 来算,这时候需要用到 17950/80 约 224 张 GPU 卡,可以看到随着批次大小 b 的增大,中间激活占用的显存远远超过了模型参数显存。

通常会采用激活重计算技术来减少中间激活,代价是增加了一次额外前向计算的时间,本质上其实就是“时间换空间”。

相信看到这里,对于其他任何尺寸的大模型,你都可以得心应手的预估所需的资源,也不用盲目抓瞎去试了。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

### 使用 DeepSeek_R1_Distill_Llama_70B_API 训练自定义模型 为了利用 `DeepSeek-R1-Distill-Llama-70B` 进行自定义模型训练,通常情况下该API主要用于推理而非训练。然而,在某些特定场景下可以通过微调(fine-tuning)的方式基于已有的预训练权重来调整模型适应新的任务需求。 对于想要使用此API进行进一步开发的应用开发者来说,可以考虑如下方法: #### 获取必要的环境配置 确保安装了Python及相关依赖库,并设置好Hugging Face Token以便能够顺利获取模型资源[^1]。 ```bash pip install transformers datasets torch accelerate huggingface-cli login ``` #### 准备数据集 准备用于微调的数据集非常重要。这应该是一个结构化的文件集合(CSV, JSONL等),其中包含了输入文本和对应的标签或目标输出。如果可能的话,尽量使这些数据尽可能接近实际应用中的情况以获得更好的泛化能力。 #### 加载预训练模型与Tokenizer 加载指定版本的LLaMA模型及其配套分词器(tokenizer),这里假设已经成功登录并具有访问权限。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "Valdemardi/DeepSeek-R1-Distill-Llama-70B" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` #### 数据处理函数 编写一个适当的数据转换逻辑,将原始样本映射成适合喂给Transformer架构的形式。 ```python def preprocess_function(examples): inputs = examples['text'] model_inputs = tokenizer(inputs, max_length=512, truncation=True) labels = copy.deepcopy([example["label"] for example in examples]) model_inputs["labels"] = labels return model_inputs ``` #### 微调过程 最后一步就是执行具体的微调操作了。这部分涉及到选择合适的优化算法、学习率调度策略等因素。建议参考官方文档或其他开源项目的经验分享来进行合理设定。 需要注意的是,由于`DeepSeek-R1-Distill-Llama-70B`本身体积较大,因此在硬件条件允许的情况下推荐采用分布式训练框架如PyTorch Lightning或者Deepspeed加速收敛速度;另外也要注意控制batch size大小以免超出显存限制引发OOM错误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值