Spring AI 框架:从零开始掌握 AI 与 Spring 的完美结合!_springai框架

前言:Spring AI 是什么?为什么值得关注?

在人工智能技术飞速发展的今天,越来越多的企业希望通过 AI 技术提升业务能力。然而,AI 技术的复杂性和 Spring 框架的流行相结合,催生了一个全新的领域:Spring AI。它旨在将 AI 模型与 Spring 生态系统无缝集成,让开发者能够轻松地在 Spring 应用中使用 AI 功能。

Spring AI 是一个轻量级的框架,专注于简化 AI 模型的集成和管理。无论你是刚接触 AI 的小白,还是有一定经验的开发者,这篇文章都将带你从零开始,全面了解 Spring AI 的核心功能、使用场景以及如何在实际项目中应用它!


第一部分:Spring AI 的基础知识

1.1 什么是 Spring AI?

Spring AI 是一个由 Spring 团队开发的开源框架,旨在帮助开发者在 Spring 应用中轻松集成和管理 AI 模型。它支持多种主流的 AI 框架(如 TensorFlow、PyTorch 等),并提供了统一的接口和工具链。

1.2 Spring AI 的核心功能
  • 模型管理:支持本地和远程模型的加载与卸载。
  • 模型推理:提供统一的接口调用 AI 模型进行推理。
  • 模型扩展:允许开发者自定义模型和扩展功能。
  • 与 Spring 生态整合:无缝集成 Spring Boot、Spring Cloud 等组件。

第二部分:Spring AI 的安装与配置

2.1 引入依赖

要在 Spring 项目中使用 Spring AI,首先需要在 pom.xml 文件中引入相关依赖:

<dependencies>
    <!-- Spring AI 核心依赖 -->
    <dependency>
        <groupId>org.springframework.ai</groupId> 
        <artifactId>spring-ai-core</artifactId>
        <version>1.0.0</version>
    </dependency>
 
    <!-- TensorFlow 支持 -->
    <dependency>
        <groupId>org.tensorflow</groupId> 
        <artifactId>tensorflow-core-api</artifactId>
        <version>2.10.0</version>
    </dependency>
</dependencies>
2.2 配置 AI 模型

application.properties 文件中配置 AI 模型的相关参数:

# 配置 TensorFlow 模型路径 
spring.ai.tensorflow.model-path=classpath:models/my_model.pb  
 
# 配置模型加载方式 
spring.ai.tensorflow.load-type=FILE  
2.3 启动类配置

在 Spring Boot 启动类中启用 Spring AI:

import org.springframework.boot.SpringApplication; 
import org.springframework.boot.autoconfigure.SpringBootApplication; 
import org.springframework.ai.autoconfigure.SpringBootApplication; 
 
@SpringBootApplication 
@EnableSpringAI 
public class SpringAiDemoApplication {
    public static void main(String[] args) {
        SpringApplication.run(SpringAiDemoApplication.class,  args);
    }
}

第三部分:Spring AI 的核心功能详解

3.1 模型管理

Spring AI 提供了强大的模型管理功能,支持本地和远程模型的加载与管理。

3.1.1 加载本地模型
import org.springframework.ai.tensorflow.TensorFlowModel; 
import org.springframework.beans.factory.annotation.Autowired; 
import org.springframework.stereotype.Service; 
 
@Service 
public class ModelService {
    @Autowired 
    private TensorFlowModel model;
 
    public void loadModel() {
        model.load("classpath:models/my_model.pb"); 
        System.out.println(" 模型加载成功!");
    }
}
3.1.2 加载远程模型
import org.springframework.ai.tensorflow.TensorFlowModel; 
import org.springframework.beans.factory.annotation.Autowired; 
import org.springframework.stereotype.Service; 
 
@Service 
public class ModelService {
    @Autowired 
    private TensorFlowModel model;
 
    public void loadRemoteModel() {
        model.load("http://example.com/models/my_model.pb"); 
        System.out.println(" 远程模型加载成功!");
    }
}
3.2 模型推理

Spring AI 提供了统一的接口调用 AI 模型进行推理。

3.2.1 文本分类示例
import org.springframework.ai.tensorflow.TensorFlowModel; 
import org.springframework.beans.factory.annotation.Autowired; 
import org.springframework.stereotype.Service; 
 
@Service 
public class InferenceService {
    @Autowired 
    private TensorFlowModel model;
 
    public String classifyText(String text) {
        Object result = model.infer(text); 
        return "分类结果:" + result.toString(); 
    }
}
3.2.2 图像识别示例
import org.springframework.ai.tensorflow.TensorFlowModel; 
import org.springframework.beans.factory.annotation.Autowired; 
import org.springframework.stereotype.Service; 
import org.springframework.web.multipart.MultipartFile; 
 
import java.io.IOException; 
 
@Service 
public class ImageService {
    @Autowired 
    private TensorFlowModel model;
 
    public String recognizeImage(MultipartFile file) throws IOException {
        byte[] imageBytes = file.getBytes(); 
        Object result = model.infer(imageBytes); 
        return "识别结果:" + result.toString(); 
    }
}
3.3 模型扩展

Spring AI 允许开发者自定义模型和扩展功能。

3.3.1 自定义模型
import org.springframework.ai.tensorflow.TensorFlowModel; 
import org.springframework.beans.factory.annotation.Autowired; 
import org.springframework.stereotype.Component; 
 
@Component 
public class CustomModel extends TensorFlowModel {
    public CustomModel(String modelPath) {
        super(modelPath);
    }
 
    public String customInference(Object input) {
        Object result = infer(input);
        return "自定义模型推理结果:" + result.toString(); 
    }
}
3.3.2 扩展功能
import org.springframework.ai.tensorflow.TensorFlowModel; 
import org.springframework.beans.factory.annotation.Autowired; 
import org.springframework.stereotype.Service; 
 
@Service 
public class ExtendedService {
    @Autowired 
    private TensorFlowModel model;
 
    public void extendFunctionality() {
        // 自定义扩展逻辑 
        System.out.println(" 扩展功能已启用!");
    }
}

第四部分:Spring AI 的进阶用法

4.1 高性能模型推理

通过配置多线程和缓存机制,可以显著提升模型推理的性能。

4.1.1 配置多线程
# 配置线程池大小 
spring.ai.tensorflow.thread-pool.size=10  
4.1.2 启用缓存
# 启用模型推理缓存 
spring.ai.tensorflow.cache.enabled=true  
4.2 模型版本管理

Spring AI 支持模型版本管理,方便开发者在不同版本之间切换。

4.2.1 配置模型版本
# 配置当前使用的模型版本 
spring.ai.tensorflow.model-version=1.0.0  
4.2.2 切换版本
import org.springframework.ai.tensorflow.TensorFlowModel; 
import org.springframework.beans.factory.annotation.Autowired; 
import org.springframework.stereotype.Service; 
 
@Service 
public class VersionService {
    @Autowired 
    private TensorFlowModel model;
 
    public void switchVersion(String version) {
        model.setVersion(version); 
        System.out.println(" 已切换到版本:" + version);
    }
}
4.3 模型监控与日志

通过监控和日志功能,可以实时跟踪模型的运行状态。

4.3.1 启用监控
# 启用模型监控 
spring.ai.tensorflow.monitoring.enabled=true  
4.3.2 查看日志
import org.slf4j.Logger; 
import org.slf4j.LoggerFactory; 
import org.springframework.ai.tensorflow.TensorFlowModel; 
import org.springframework.beans.factory.annotation.Autowired; 
import org.springframework.stereotype.Service; 
 
@Service 
public class LoggingService {
    private static final Logger logger = LoggerFactory.getLogger(LoggingService.class); 
 
    @Autowired 
    private TensorFlowModel model;
 
    public void logStatus() {
        logger.info(" 当前模型状态:{}", model.getStatus()); 
    }
}

第五部分:总结与展望

通过本文的学习,你已经掌握了 Spring AI 框架的基本概念、安装配置、核心功能以及进阶用法。从模型管理到推理扩展,再到高性能优化和监控日志,Spring AI 为开发者提供了一站式的解决方案。

希望这篇文章能够帮助你在 Spring AI 的世界里走得更远!如果你有任何疑问或经验分享,欢迎在评论区留言,让我们一起探讨和进步! 😊

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值