温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作
主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等
业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。
收藏点赞不迷路 关注作者有好处
**文末获取源码**
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
开题报告
一、研究背景与意义
随着互联网的快速发展和电子商务的普及,中药材市场也迎来了前所未有的发展机遇。然而,中药材种类繁多,功效各异,对于普通消费者而言,如何选择适合自己的中药材成为了一个难题。同时,中药材市场的信息不对称现象严重,消费者往往难以获取全面、准确的信息来做出购买决策。因此,开发一个基于Python和DeepSeek-R1大模型的中药材推荐系统具有重要的现实意义。
DeepSeek-R1大模型作为一种先进的深度学习模型,在自然语言处理、逻辑推理等领域表现出色。将其应用于中药材推荐系统,可以实现对中药材信息的深度挖掘和分析,为消费者提供个性化、精准的推荐服务,从而提高消费者的购买体验和满意度。
二、国内外研究现状
1. 国内研究现状
在国内,中药材推荐系统的研究尚处于起步阶段。目前,一些电商平台和中药材销售网站已经开始尝试使用推荐算法来提高用户的购买体验和销售额。然而,这些推荐系统大多基于传统的协同过滤、内容推荐等算法,难以实现对中药材信息的深度挖掘和分析。
2. 国外研究现状
在国外,推荐系统的研究已经相对成熟,广泛应用于电子商务、社交媒体等领域。特别是在自然语言处理和深度学习技术的推动下,推荐系统的准确性和个性化程度得到了显著提升。然而,将DeepSeek-R1大模型应用于中药材推荐系统的研究尚不多见。
三、研究内容与目标
1. 研究内容
(1)中药材信息采集与预处理:利用Python爬虫技术从中药材销售网站、医药数据库等渠道采集中药材信息,包括名称、功效、用法、用量、价格等,并进行数据清洗、去重、归一化等预处理操作。
(2)中药材信息表示与建模:基于DeepSeek-R1大模型,构建中药材信息的表示模型,实现对中药材信息的深度理解和分析。
(3)中药材推荐算法设计:结合用户历史行为数据和中药材信息表示模型,设计中药材推荐算法,实现对用户的个性化推荐。
(4)系统开发与测试:开发基于Python和DeepSeek-R1大模型的中药材推荐系统,并进行功能测试和性能评估,确保系统的稳定性和可靠性。
2. 研究目标
(1)构建一个基于Python和DeepSeek-R1大模型的中药材推荐系统,实现对中药材信息的深度挖掘和分析。
(2)提高中药材推荐的准确性和个性化程度,提高消费者的购买体验和满意度。
(3)推动中药材电子商务的发展,促进中药材市场的繁荣。
四、研究方法与技术路线
1. 研究方法
(1)文献研究法:通过查阅国内外相关文献和资料,了解中药材推荐系统领域的研究现状和发展趋势。
(2)数据采集与预处理法:利用Python爬虫技术采集中药材信息,并进行数据清洗、去重、归一化等预处理操作。
(3)模型构建与训练法:基于DeepSeek-R1大模型构建中药材信息的表示模型,并利用历史数据进行模型训练和优化。
(4)结果分析与可视化法:对推荐结果进行分析和可视化展示,评估系统的性能和效果。
2. 技术路线
(1)中药材信息采集:利用Python爬虫技术从中药材销售网站、医药数据库等渠道采集中药材信息。
(2)中药材信息预处理:对采集到的中药材信息进行数据清洗、去重、归一化等预处理操作。
(3)中药材信息表示模型构建:基于DeepSeek-R1大模型构建中药材信息的表示模型。
(4)中药材推荐算法设计:结合用户历史行为数据和中药材信息表示模型,设计中药材推荐算法。
(5)系统开发与测试:开发基于Python和DeepSeek-R1大模型的中药材推荐系统,并进行功能测试和性能评估。
五、研究计划与进度安排
1. 准备阶段(第1-2个月)
(1)收集相关文献和资料,了解研究背景和现状。
(2)确定研究内容和目标,制定研究计划和进度安排。
(3)搭建实验环境,准备数据采集和预处理工具。
2. 数据采集与预处理阶段(第3-4个月)
(1)利用Python爬虫技术采集中药材信息。
(2)对采集到的中药材信息进行数据清洗、去重、归一化等预处理操作。
3. 模型构建与训练阶段(第5-6个月)
(1)基于DeepSeek-R1大模型构建中药材信息的表示模型。
(2)利用历史数据进行模型训练和优化,提高模型的准确性和泛化能力。
4. 推荐算法设计与实现阶段(第7-8个月)
(1)结合用户历史行为数据和中药材信息表示模型,设计中药材推荐算法。
(2)实现中药材推荐算法,并进行初步测试和调整。
5. 系统开发与测试阶段(第9-10个月)
(1)开发基于Python和DeepSeek-R1大模型的中药材推荐系统。
(2)对系统进行功能测试和性能评估,确保系统的稳定性和可靠性。
6. 总结与验收阶段(第11-12个月)
(1)撰写研究报告和学术论文,总结研究成果和经验教训。
(2)进行项目验收和成果展示,提交毕业设计和答辩材料。
六、预期成果与创新点
1. 预期成果
(1)构建一个基于Python和DeepSeek-R1大模型的中药材推荐系统。
(2)提高中药材推荐的准确性和个性化程度,提高消费者的购买体验和满意度。
(3)推动中药材电子商务的发展,促进中药材市场的繁荣。
2. 创新点
(1)首次将DeepSeek-R1大模型应用于中药材推荐系统领域,实现对中药材信息的深度挖掘和分析。
(2)结合用户历史行为数据和中药材信息表示模型,设计个性化的中药材推荐算法,提高推荐的准确性和个性化程度。
(3)开发基于Python和DeepSeek-R1大模型的中药材推荐系统,为中药材电子商务的发展提供新的思路和方法。
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)
大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)
电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)
大模型面试
**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
**或扫描下方二维码领取 **