经常有朋友问我,从哪知道的AI各种奇淫技巧的玩法,答案是:github
作为一个程序员,逛github几乎是我每天都干的事情。以前是在上面找各种有趣的开源项目
进入AI时代,发现github的作用一点没减弱,在github上也能找到各种AI的开源项目,干货资料,还有各路大神在AI领域的探索
最近,我又发现了一个比较有意思的项目,这个项目的作者不知道用了什么方法,把Gpt, Grok3, Claude的系统提示词搞到手了
名字也取得很嚣张:system_prompts_leaks。 系统提示词泄露。
这个提示词基本就包含Claude,GPT和grok3的
平常用cursor写代码的时候,用claude比较多,所以先就打开了claude看看,它的提示词怎么写的
一打开,好家伙,1109行的提示词,拷贝出来,算了下字数,17000+字。这哪是提示词,分明是写了个脚本。
为了方便大家看,我做了个饼图。可以看到分成了7大类,每个大类所占的比例也标识出来了
但GPT4.5和GPT-4o的提示词确非常的简单,GPT4.5只有143行。GPT-4o甚至只有645行。
GPT-4o甚至只有64行。
Grok3的提示词最少,只有36行。
为啥都是大模型,系统提示词差别会这么大呢,这就设计到大模型提示词的两种不同的设计哲学了
01
Claude的「显式规则驱动」模式
Claude采用的是显示规则,打个比喻,这种规则就像是一个全面掌控小孩的家长,所有的行为,所有的时间安排都被一行行的提示词给规定好了
如果发现新的行为需要约束,那就马上在系统提示词中增加约束。所以Claude的系统提示词必须得随时人工维护
比如关于安全防护方面,Claude给出了非常详尽的约束
几乎都是 MUST not, Never, Avoid creating这样的语气开头,给人的感觉就是个严厉的家长
再来看工具调用方法,也是事无巨细,都写得非常详细,我搜索了tool这个关键词,出来的是密密麻麻的各种tool调用的约束和限制
而且claude的提示词,很多这种一行一行的,一看就是事后人工追加上去的
02
隐式能力内化
相反的是,GPT和grok3都采用的是隐士能力内化。也就是不太依赖提示词的约束,更多的是依赖预训练阶段内化的知识图谱和微调策略
从这点看,GPT和grok3的路线更像是纯AI路线,我训练好一个模型,给一个基本的说明就好。剩下的操作都是让模型自己去处理。
通过多模态联合训练将这些约束融入模型权重,减少显式提示需求
除了技术路线的差别,还有个关键点是,Claude长上下文窗口有20万token, GPT-4o只有32k,这个的差别也迫使GPT必须压缩系统提示词
但这样搞,其实也有个坏处,就是安全性降低了,Claude的这种方式虽然看上去很土,但从来没看到过Claude的模型爆什么惊世骇俗的语言出来
而GPT和grok3,则成了很多AI黑客的最爱,经常绕过大模型的限制,让大模型放飞自我。比如windows注册码泄露等等。
最后,放上github的链接:
https://github.com/asgeirtj/system_prompts_leaks/
我的思考
Claude这样的笨办法和GPT的省事办法,究竟谁更好呢?
我觉得都不是完美的,系统提示词要有,而且也得详细,但不能靠手动维护的方式去
为什么不能靠大模型的记忆以及学习能力,去实时的更新它呢。就好比我们人类自己的大脑和记忆
上图是是做的一个对比流程图。我觉得新策略才是未来要实现的方向
觉得都不是完美的,系统提示词要有,而且也得详细,但不能靠手动维护的方式去
为什么不能靠大模型的记忆以及学习能力,去实时的更新它呢。就好比我们人类自己的大脑和记忆
上图是是做的一个对比流程图。我觉得新策略才是未来要实现的方向
当然,这也会带来另外一个问题,到时候,还有人类什么事?
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)
大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)
电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)
大模型面试
**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
**或扫描下方二维码领取 **