Trae国内版发布,中国首款AI 原生IDE 正式上线,配置Doubao-1.5-pro,支持切换满血版DeepSeek 模型

今日,中国首个AI原生集成开发环境(AI IDE)Trae 国内版正式上线,配置Doubao-1.5-pro,并支持切换满血版DeepSeek R1、V3模型,让编程速度起飞。

作为更贴合中国开发者开发习惯与开发场景的AI IDE,Trae 以动态协作为核心,打造了一种人机协同,人与AI互相增强的全新开发体验,助力开发者高效应对复杂技术挑战,释放创新潜能。

人与 AI 默契协作,全新开发体验

AI技术的快速发展,让开发方式面临着巨大的变革,开发者亟需更高效率、更智能化的工具支持。Trae 应需而发,定位为 “智能协作AI IDE ,以“人机协同、互相增强”为核心理念,对代码补全 ,代码理解,Bug修复,基于自然语言生成代码等开发过程全场景都有非常好的适应性,不仅是一个开发工具,更是一位全天候开发“拍档”。

而基于人与AI协作开发的理念,无论是人还是AI,Trae 让恰当的对象,在恰当的时间接管工作,确保每一个代码片段都是人与AI共创的最优结果,为开发者带来更加高效、优质的开发体验。

更快,更好,更准确

Trae 为开发者打造了前所未有的开发体验,帮助开发者更快速,更准确,更高质量的完成开发需求。

全新 Builder 模式能充分利用AI的能力,无论是初学者还是资深的开发者,都能够轻松通过自然语言描述迅速的,端到端的生成应用:只需要用简单的语言描述需求,Trae 就可以迅速搭建起项目框架,还能持续进行调优修改,产出可用代码。这种智能化的"思想到代码"直通车能力,全程助力开发者将需求端到端完美落地,极大缩短了项目筹备周期,为高效开发奠定坚实基础。

在代码理解维度,Trae 的能力边界实现了质的突破,凭借对开发项目上下文的极致理解,深入剖析代码仓库,实时获取IDE中的各种环境上下文,精准洞察开发者的需求,从而为开发过程提供最为契合、准确的解决方法。

针对需求沟通效率问题,Trae 的实时代码续写技术可基于开发项目整体上下文进行智能补全,提升编码效率,而在交互体验方面,开发者可以便捷地将 AI 生成的代码一键应用到多个模块,还能根据实际需求随时灵活调整指令,并实时预览 AI 生成代码的前端效果。

在通往AI Coding 的 AGI 时代里,有众多 AI 辅助编程工具出现,但Trae 希望成为更可靠的、值得开发者信赖的“AI 工程师” (The Real AI Engineer ): 通过真正的 AI 编程 Agent, 帮助开发者实现「从需求到落地」的端到端全链路开发闭环。Trae 相信,一个好的“AI 工程师”,不仅是一个好用的工具,更是一个多面手AI合作伙伴,可以更好的帮助开发者解决多种问题,让其有精力去重新构想价值创造的方式,触摸创造力的天花板。

即刻体验畅快编程

Trae 国内版不仅针对中国开发场景和习惯进行了一些优化,后续还即将支持模型自定义,用户可以根据自己的喜好,接入合适的大模型API,希望给开发者带来全新的AI IDE 开发体验。

即刻访问官网trae.com.cn,下载安装包,和我们一起,解锁AI驱动的开发新未来~

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

内容包括:项目实战、面试招聘、源码解析、学习路线。

img

imgimgimgimg
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

### Trae 模型配置方法与使用指南 TraeDeepSeek 提供的一种高性能语言模型,其配置过程涉及多个方面,包括环境搭建、依赖安装以及具体参数调整等内容。以下是关于 Trae 模型配置的相关说明: #### 一、环境准备 为了成功运行 Trae 模型,需确保开发环境中具备必要的软件支持和硬件条件。推荐的操作系统为 Linux 或 macOS,同时需要 Python 本不低于 3.8[^1]。 ```bash # 安装 Anaconda/Miniconda 来管理虚拟环境 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh ``` 创建并激活专用的 Conda 虚拟环境: ```bash conda create -n trae-env python=3.9 conda activate trae-env ``` #### 二、依赖库安装 在完成基础环境设置之后,应通过 `pip` 工具安装所需的核心依赖项。这些工具包通常包括但不限于 PyTorch 和 Transformers 库。 ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install transformers datasets accelerate ``` 上述命令中的本号可能依据实际需求有所变化,请参照官方文档确认最新兼容性信息。 #### 三、模型加载与初始化 利用 Hugging Face 的 Transformer API 可简化 Trae 模型实例化流程。下面展示了一个基本示例代码片段用于演示如何加载预训练权重文件。 ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/trae-model-name") model = AutoModelForCausalLM.from_pretrained("deepseek/trae-model-name") def generate_text(prompt, max_length=50): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=max_length) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ``` 注意替换 `"deepseek/trae-model-name"` 成具体的子型号名称。 #### 四、性能优化建议 对于大规模部署场景下提高推理效率可采取如下策略之一或多组合方式实现加速效果提升: - **量化处理**: 将浮点数精度降低至 INT8 或更低形式从而减少内存占用量同时也加快计算速度; - **批处理机制**: 同时提交多条请求给 GPU 并行执行以摊销固定开销部分成本. 以上操作均可以通过调用相应框架功能轻松达成目标. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值