腾讯ima、Get笔记、Filez,谁才是AI知识库“梦之队”?

在信息爆炸的数字时代,AI与“知识”的黄金组合,成为了当之无愧的智能“梦之队”。

企业提质增效、个人学习成长……每一个角落都有AI知识库的影子。

不过,这个潜力无限的知识管理“利器”,你真的用对了吗?

带着这个问题,橙子深扒了腾讯ima、Get笔记、Filez等一众明星选手,为小伙伴们解锁了AI知识库的底层逻辑。

无生态,不AI

随着AI知识库的不断进化,“无生态,不AI”的含金量持续上升。

背靠“腾讯”这棵大树,定位「AI工作台」的腾讯ima知识库,从记录、整理到分析、协作全链路构筑了智能生态的新高地。

从一键存档微信聊天文件、公众号、本地文件,到加速数据安全、多端同步和未来生态扩展,再到推出知识号、加入知识库广场等公域布局,腾讯ima实现了知识管理的数智化跃迁。

null

对于用户来说**,“腾讯ima+微信生态”,就是AI知识库的“王炸组合”。**通过多生态协同,加速知识的有效传播和吸收,让知识“真正流动起来”。

对于创作者来说,高质量知识库与公域的深度融合,更是有望打通知识共享的全新入口。

null

相比腾讯ima,Get笔记、Filez的生态体系就略显单薄了。

主打“碎片化信息处理”的Get笔记,虽然与“得到”生态绑定,但使用场景总体受限,只能在“个人”的赛道上寻找未来的节奏。

null

致力实现“文件+内容+知识”全链智能协同的Filez有联想的加持,服务体系较为完善,却在知识库扩容、公私域联动等方面稍有不足,限制了知识库的高效应用和管理。

null

*从“宽度”到“厚度”*

如果说生态代表着AI知识库未来发展的“宽度”,那么技术就预示着AI知识库未来发展的“厚度”。

基于腾讯强大的AI能力,腾讯ima将解读、问答、创作三种能力紧密结合支持边看边问、边写边搜、跨库提问,以及AI写作直接嵌入笔记,进一步提升智能搜索、智能创作、团队协作质效,让智能知识管理变得更加简单。

null

同时,腾讯ima还实现混元与DeepSeek双模型驱动。提供了DeepSeek v3、DeepSeekR1、hunyuan、hunyuanT1这4个选项,支持深度研究与脑图生成,信息获取、整理、利用和分享效率全面提升。基于此,我们可以轻松开启“搜读写”新体验,为打造“专属知识宝库”带来更多可能。

Get笔记仅支持单知识库提问,且无实时交互能力以及AI写作能力,“人找信息”的难度可谓不小。Filez结合自然语言处理和知识图谱技术,实现自动化分类、智能推荐和深度关联洞察,但在智能创作等方面仍有待改善。

null

null

*打破孤立,拥抱协作*

当前,知识早已不再是孤立的“独家财产”。

腾讯ima从一开始就将打破“知识壁垒”作为自己的目标。**支持建立多个知识库,并支持公开/部门级共享,让团队成员可以无障碍的共同编辑和管理文档,以及实时沟通和协作,助力知识如水般流动。**在知识号中,创作者也可分析阅读数据,给予知识更大的力量和价值。

null

在ima不仅可以搭建知识库,还可以解读PDF、word、PPT、md文档,发布至广场的知识库不占用个人云存储空间,让更多人有机会成为知识的生产者、传播者和消费者。

img

Get笔记最多允许建立三个知识库,方便调用,但扩展性不足,并对PDF、word、PPT等文档解读收费。Filez提供全面的协作工具,支持跨平台使用,不过高级功能和更大的存储空间需要收费,这些无疑都制约了知识的开放、共享和合作。

null

null

结语:激活知识共享真正价值

在这个知识开放的时代,将共享的知识转化为真正的价值,并不容易。显然,腾讯ima知识库已经走在了行业的前列。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

### 关于 DeepSeek、腾讯元宝和 IMA 知识库的信息 #### 腾讯与 DeepSeek 合作进展 腾讯在推出腾讯云支持 DeepSeek 能力开发的小程序以及 ima 接入 DeepSeek-R1 能力之后,持续加强与 DeepSeek 的合作关系,旨在进一步拓展 AI 应用的功能和服务质量[^1]。 #### API 调用建议 对于希望利用 Deepseek R1 模型实现更高效能的应用场景而言,直接通过网页接口访问可能会遇到性能瓶颈,比如响应间较长等问题。相比之下,采用 API 方式可以有效提升交互效率并提供更好的用户体验,不过这种方式更适合具备一定编程能力的技术人员操作[^2]。 #### 用户反馈实例 有报道提到,当量子位依据特定标准测试了集成 DeepSeek-R1 和网络连接功能后的腾讯元宝设备,获得了多方面的实际使用体验数据,这有助于了解该产品的具体表现情况[^3]。 #### IMA 知识库获取途径 为了方便用户更好地理解和运用这些先进的技术成果,腾讯提供了多种渠道来接触和支持 IMA Copilot 这一创新工具。官方网址为 [ima.qq.com](http://ima.qq.com),Android 设备可以在腾讯应用宝里搜索“ima”,而在微信环境中则可以直接搜寻名为“ima知识库”的小程序来进行安装和试用[^4]。 ```python import requests def get_deepseek_api_response(api_key, query): url = f"https://api.deepseek.example/v1/query?apikey={api_key}&q={query}" response = requests.get(url) if response.status_code == 200: return response.json() else: raise Exception(f"Failed to fetch data from DeepSeek API: {response.text}") # Example usage of the function with a hypothetical API key and query. try: result = get_deepseek_api_response('your-api-key-here', 'example-query') print(result) except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值