MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。有点类似sql语句中的count(*)。
语法
>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)
实例
集合中的数据格式:
{
"_id" : ObjectId("577e09da6a857a35563587c0"),
"_class" : "com.market.salepromotionapi.coupon.pojo.CouponPojo",
"couponGroupId" : "C201607070000000003",
"couponGroupName" : "线线线线线线线线线线线线线线线",
"description" : "string",
"price" : 1.0000000000000000,
"range" : [
{
"_class" : "com.market.salepromotionapi.coupon.pojo.GoodsSKUPojo",
"skuId" : "IMHNSKU20160818100188003",
"skuName" : "2室2厅1卫_",
"groupId" : "IMHNGROUP2016081810000188",
"houseId" : "IMHN2016081810000188",
"houseName" : "钱塘玫瑰湾",
"developName" : ""
},
{
"_class" : "com.market.salepromotionapi.coupon.pojo.GoodsSKUPojo",
"skuId" : "IMHNSKU20160818100188002",
"skuName" : "2室2厅1卫_",
"groupId" : "IMHNGROUP2016081810000188",
"houseId" : "IMHN2016081810000188",
"houseName" : "钱塘玫瑰湾",
"developName" : ""
}
],
"type" : 0,
"startTime" : ISODate("2016-07-07T15:50:50.000+08:00"),
"endTime" : ISODate("2017-09-30T15:50:50.000+08:00"),
"createTime" : ISODate("2016-07-07T15:50:50.570+08:00"),
"status" : 5,
"updateList" : [
{
"beanPrice" : 0.0000000000000000,
"logType" : 0,
"status" : 0,
"updateTime" : ISODate("2016-11-18T15:55:10.915+08:00"),
"updater" : "xxxx",
"remarks" : "强制过期"
},
{
"beanPrice" : 0.0000000000000000,
"logType" : 0,
"status" : 0,
"updateTime" : ISODate("2016-11-18T15:55:10.915+08:00"),
"updater" : "xxxxx",
"remarks" : "强制过期"
}
],
"updateTime" : ISODate("2016-11-18T15:55:10.915+08:00"),
"sumbmiter" : "提交人",
"submitTime" : ISODate("2016-10-26T09:21:18.180+08:00"),
"frontDisplay" : "1",
"updater" : "xxxxx",
"submiter" : null,
"checkRecordList" : [
{
"_id" : null,
"checker" : "系统处理",
"status" : 3,
"checkTime" : ISODate("2016-10-26T09:13:06.186+08:00"),
"remarks" : "该优惠券已过期,系统已处理!"
},
{
"_id" : null,
"status" : 2,
"checkTime" : ISODate("2016-10-26T09:21:48.732+08:00"),
"remarks" : ""
}
],
"checker" : null,
"checkTime" : ISODate("2016-10-26T09:21:48.732+08:00"),
"forceEndTime" : ISODate("2016-11-18T15:55:10.915+08:00")
}
现在我们通过以上集合计算每个每个提交人创建的文档数,使用aggregate()计算结果如下:
根据资源文档的排序获取最后一个文档数据
下表展示了一些聚合的表达式:
管道的概念
管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。
MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。
表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。
表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。
这里我们介绍一下聚合框架中常用的几个操作:
- $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
- $match:用于过滤数据,只输出符合条件的文档。$match使用MongoDB的标准查询操作。
- $limit:用来限制MongoDB聚合管道返回的文档数。
- $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
- $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
- $group:将集合中的文档分组,可用于统计结果。
- $sort:将输入文档排序后输出。
- $geoNear:输出接近某一地理位置的有序文档。
1、$project实例
db.article.aggregate( { $project : { title : 1 , author : 1 , }} );
这样的话结果中就只还有_id,tilte和author三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:
db.article.aggregate( { $project : { _id : 0 , title : 1 , author : 1 }});
2.$match实例
db.articles.aggregate( [ { $match : { score : { $gt : 70, $lte : 90 } } }, { $group: { _id: null, count: { $sum: 1 } } } ] );
$match用于获取分数大于70小于或等于90记录,然后将符合条件的记录送到下一阶段$group管道操作符进行处理。
3.$skip实例
db.article.aggregate( { $skip : 5 });
经过$skip管道操作符处理后,前五个文档被"过滤"掉。