一、首先下载正确的GPU驱动
1.1 删除旧的驱动
原来Linux默认安装的显卡驱动不是英伟达的驱动,所以先把旧得驱动删除掉。
# 删除
sudo apt-get purge nvidia*
1.2 禁止自带的nouveau nvidia驱动
# 打开配置文件
sudo vim /etc/modprobe.d/blacklist-nouveau.conf
填写禁止配置的内容:
blacklist nouveau
options nouveau modeset=0
更新配置文件,
sudo update-initramfs -u
最后需要进行重启,重启之后,
查看是否禁用:
1.3 安装gcc:
1.4 TeslaP100的ubuntu驱动: ,安装过程主意循环登录问题:
1.5 查看系统是否安装成功:
$ nvidia-smi
二、安装CUDA 9.2
安装结束:
测试cuda9.2环境配置是否成功
$ nvcc --version
二、 安装cuDNN深度学习工具包
三、安装cuDNN:下载之后执行命令:sudo dpkg -i libcudnn7...........deb。等以上三个文件。一般而言,这块安装比较简单。
四、安装python
安装python3.6
测试版本:python3.6 --version #如果系统已预装好了,就不必再安装。
五、安装Anaconda 3-5.1版本
下载Anaconda…..sh
执行命令:sudo sh Anaconda…..sh 回车
六、安装pycharm
下载linux版本的pycharm,解压安装
注意,在配署开发环境时,要注意文件系统的读写权限,最好给所读写的文件夹赋予所有读写权:
配置Anaconda3与Pycharm:
如图所示,给文件夹anaconda3授予所有读写权限。
七、安装tensorflow:
Tensorflow可通过Anaconda navigator直接安装,非常方便。
通过Anaconda安装Tensorflow
八、测试成功:
Tesla P100被调用: