CodeForces - 372C Watching Fireworks is Fun dp

本文解析 CodeForces 372C 题目,介绍如何利用动态规划和单调队列优化算法解决该问题。通过对题目背景的描述,给出了具体的动态规划状态定义、转移方程,并详细解释了使用单调队列进行优化的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://codeforces.com/problemset/problem/372/C

题意:在一条街道上(线段),有m个烟花,给出每个烟花的位置和燃放的时间,以及一个b【i】值,当烟花燃放时,你在街道的x(1=<x<=n)位置上获得的乐趣值为

b【i】-abs(a【i】-x),刚开始你可以在任意位置,之后可以移动你的位置,每秒可移动d个单位,求所有烟花燃放完之后的乐趣值最大值

dp【i】【j】表示看完前i个烟花且最后位置在j上的最大乐趣值

转移方程很简单:

dp【i】【j】=max(dp【i-1】【k】)+b【i】-abs(a【i】-x)  (j - d * (t [i] - t [i-1]) =< k <= j + d * (t [i] - t [i-1])  )

朴素方法必然会T,需要单调队列优化,维护一个递减的单调队列,每次通过下标从队首维护 使得队内元素的原序列下标 满足区间左边界条件,接不断着把满足右边界条件的元素入队,且入队时维护单调递减的性质,这样队首元素保存的就是某个范围内的最大值了


#include<bits/stdc++.h>
using namespace std;
const int maxn=305;
long long a[maxn],b[maxn],t[maxn];
long long dp[2][155000];
const long long inf=0x3f3f3f3f3f3f3f3f;
struct node
{
    int index;
    long long x;
}que[255000];
inline long long abss(long long x)
{
    return x<0?-x:x;
}
long long f(int i,int j)
{
    return b[i]-abss(a[i]-j);
}
int main()
{
    int n,m,d,i,j;
    while(cin>>n>>m>>d)
    {
        for(i=1;i<=m;i++)
            scanf("%lld %lld %lld",&a[i],&b[i],&t[i]);
        memset(dp,-inf,sizeof(dp));
        int noww=1,pree=0;
        for(i=1;i<=n;i++)
            dp[1][i]=f(1,i);
        for(i=2;i<=m;i++)
        {
            swap(noww,pree);
            long long le,ri,now=(t[i]-t[i-1])*d;
            int index=1,head=1,tail=1;
            for(j=1;j<=n;j++)
            {
                le=max(1ll,j-now),ri=min(j+now,n*1ll);
                while(que[head].index<le&&head<tail)
                    head++;
                while(index<=ri)
                {
                    node temp;
                    temp.index=index;
                    temp.x=dp[pree][index];
                    while(que[tail-1].x<=temp.x&&tail>head)
                        tail--;
                    que[tail++]=temp;
                    index++;
                }
                dp[noww][j]=que[head].x+f(i,j);
            }
        }
        long long ans=-inf;
        for(i=0;i<=n;i++)
            ans=max(ans,dp[noww][i]);
        cout<<ans<<endl;
    }
    return 0;
}


b【i】-abs(a【i】-x)
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值