A题类似想到给多个区间,求最少多少个区间可以覆盖全部的问题,求法就是从当前这步能够到达的区间里,选一个下一步能到的最大值,对于本题,区别一是树形结构,不是一维的直线了,区别二是点都是连续的,不是离散的了,所以就可以把求法转化成记录,树形遍历,记录当前步这个范围里下一步能走的最大值。详见代码
举两个样例方便理解
input
5
1
2
3
2
1 2 3 2 1
output
3
input
5
1
2
3
2
1 2 3 2 3
output
2
#include<bits/stdc++.h>
using namespace std;
vector< int > w[100005];
int n;
int ans;
int book[100005],k[100005],fa[100005];
int dfs(int x)
{
int now = 0;
for(int i = 0;i < w[x].size();i++)
{
if(book[w[x][i]])
continue;
book[w[x][i]]=1;
now = max(now , dfs(w[x][i]));
}
if(now<=1)
{
ans++;
return k[x];
}
k[fa[x]] = max(k[fa[x]] , k[x]-1);
return now-1;
}
int main()
{
int i,a;
ans = 0;
cin >> n;
for(i = 2;i <= n;i++)
{
scanf("%d",&a);
fa[i]=a;
w[a].push_back(i);
}
for(i = 1;i <= n;i++)
{
scanf("%d",&k[i]);
}
book[1]=1;
dfs(1);
cout << ans << endl;
return 0;
}
E 纯暴力,因为转换进制时忘记特判位数大于9的情况wa两发。。。。。。。。。
可以用kmp求是否匹配,据说可以直接暴力,string.find()....
应该先做E的。。。
#include<bits/stdc++.h>
using namespace std;
int f[ 2000000];
void getfill(string &s)
{
memset(f,0,sizeof(f));
for(int i=1;i<s.size();i++)
{
int j=f[i];
while(j && s[i]!=s[j])
j=f[j];
f[i+1]=(s[i]==s[j])?j+1:0;
}
}
int findd(string &a,string &s)
{
int ans=0;
int j=0;
for(int i=0;i<a.size();i++)
{
while(j && a[i]!=s[j])
j=f[j];
if(a[i]==s[j])
j++;
if(j==s.size()){
return 1;
}
}
return 0;
}
string aa,bb;
int main()
{
ios::sync_with_stdio(false);
int n,t,k,i;
cin>>n>>bb;
getfill(bb);
for(k=2;k<=16;k++)
{
aa="";
for(i=1;i<=n;i++)
{
string now="";
int tt=i;
while(tt)
{
if(tt%k>=10)
now+=(char)(tt%k-10+'A');
else
now+=(char)(tt%k+'0');
tt/=k;
}
reverse(now.begin(),now.end());
aa+=now;
}
// cout<<aa<<endl;
if(findd(aa,bb)>=1)
{
cout<<"yes"<<endl;
return 0;
}
}
cout<<"no"<<endl;
return 0;
}