CodeM美团点评编程大赛 初赛B轮 A 黑白树 贪心 E 子串 暴力

A题类似想到给多个区间,求最少多少个区间可以覆盖全部的问题,求法就是从当前这步能够到达的区间里,选一个下一步能到的最大值,对于本题,区别一是树形结构,不是一维的直线了,区别二是点都是连续的,不是离散的了,所以就可以把求法转化成记录,树形遍历,记录当前步这个范围里下一步能走的最大值。详见代码

举两个样例方便理解

input

5
1
2
3
2
1 2 3 2 1

output

3

input
5
1
2
3
2
1 2 3 2 3

output

2

#include<bits/stdc++.h>
using namespace std;
vector< int > w[100005];
int n;
int ans;
int book[100005],k[100005],fa[100005];
int dfs(int x)
{
    int now = 0;
    for(int i = 0;i < w[x].size();i++)
    {
        if(book[w[x][i]])
            continue;
        book[w[x][i]]=1;
        now = max(now , dfs(w[x][i]));
    }
    if(now<=1)
    {
        ans++;
        return k[x];
    }
    k[fa[x]] = max(k[fa[x]] , k[x]-1);
    return now-1;
}
int main()
{
    int i,a;
    ans = 0;
    cin >> n;
    for(i = 2;i <= n;i++)
    {
        scanf("%d",&a);
        fa[i]=a;
        w[a].push_back(i);
    }
    for(i = 1;i <= n;i++)
    {
        scanf("%d",&k[i]);
    }
    book[1]=1;
    dfs(1);
    cout << ans << endl;
    return 0;
}

E  纯暴力,因为转换进制时忘记特判位数大于9的情况wa两发。。。。。。。。。

可以用kmp求是否匹配,据说可以直接暴力,string.find()....

应该先做E的。。。

#include<bits/stdc++.h>
using namespace std;
int f[ 2000000];
void getfill(string &s)
{
    memset(f,0,sizeof(f)); 
    for(int i=1;i<s.size();i++)
    {
        int j=f[i];
        while(j && s[i]!=s[j])
            j=f[j];
        f[i+1]=(s[i]==s[j])?j+1:0;
    }
}
int findd(string &a,string &s)
{
    int ans=0;
    int j=0;
    for(int i=0;i<a.size();i++)
    {
        while(j && a[i]!=s[j])
            j=f[j];
        if(a[i]==s[j])
            j++;
        if(j==s.size()){
            return 1;
        }
    }
    return 0;
}
string aa,bb;
int main()
{
    ios::sync_with_stdio(false);
    int n,t,k,i;
    cin>>n>>bb;
    getfill(bb);
    for(k=2;k<=16;k++)
    {
        aa="";
        for(i=1;i<=n;i++)
        {
            string now="";
            int tt=i;
            while(tt)
            {
                if(tt%k>=10)
                now+=(char)(tt%k-10+'A');
                else
                now+=(char)(tt%k+'0');
                tt/=k;
            }
            reverse(now.begin(),now.end());
            aa+=now;
        }
      //  cout<<aa<<endl;
        if(findd(aa,bb)>=1)
        {
            cout<<"yes"<<endl;
            return 0;
        }
    }
    cout<<"no"<<endl;
    return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值