LR(Logistic Regression) & XGBOOST 学习笔记

LR(Logistic Regression) & XGBOOST 在 CTR中的应用

此文将持续更新,欢迎指导交流~

立志要成为一位优秀炼丹师的我搞起 CTR 来突然压力山大。数据是最最主要的原因,而且毕竟调得少,慢慢攒点经验吧。

在 CTR 中,最大的两个问题就是:

  • 数据不均衡。在投放的大量广告中真正转化的样本数量很少。
  • 数据稀疏。每个样本的特征信息都不太全。

LR 和 XGOOST 是 CTR 中常用的两种模型,二者各有优缺点,在 facebook 中使用 XGBOOST(提取特征) + LR(预测) 的方式。GBDT 模型擅长处理连续特征值,而 LR 则擅长处理离散特征值。在 XGBOOST 中,将连续特征值输入 XGBOOST 中,训练好模型以后,得到 K 棵数,每棵树上分别有 n 1 , n 2 , . . . , n K n_1, n_2, ..., n_K n1,n2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值