python
文章平均质量分 72
永永夜
good good study, day day up!
展开
-
linux下python的文件路径操作
1.如何在linux下通过import来导入自定义的模块2.关于os.path的使用原创 2016-09-26 22:50:58 · 16104 阅读 · 0 评论 -
TensorFlow入门(九)使用 tf.train.Saver()保存模型
关于模型保存的一点心得saver = tf.train.Saver(max_to_keep=3)在定义 saver 的时候一般会定义最多保存模型的数量,一般来说,如果模型本身很大,我们需要考虑到硬盘大小。如果你需要在当前训练好的模型的基础上进行 fine-tune,那么尽可能多的保存模型,后继 fine-tune 不一定从最好的 ckpt 进行,因为有可能一下子就过拟合了。但是如果保存太多,硬盘也有原创 2017-11-21 16:59:28 · 35599 阅读 · 5 评论 -
ipython notebook使用教程
最近在使用jupyter notebook,感觉非常舒爽。特别是在本地的浏览器上就可以利用jupyter实现在服务器上编程,更是爽歪歪了。关于如何实现本地浏览器上进行服务器上编程参照了这篇文章:Ubuntu环境下Anaconda安装TensorFlow并配置Jupyter远程访问.另外,亲测发现ipython运行速度比使用pycharm快(这是为什么呢?)***转载 2016-11-21 00:05:32 · 24530 阅读 · 0 评论 -
二分类结果分析工具函数
下面代码是我总结的针对二分类问题的预测结果分析工具函数。 代码中有详细的文档说明。所以可以直接看代码。# -*- coding:utf-8 -*-from __future__ import print_functionfrom __future__ import divisionimport numpy as npimport pandas as pdimport matplotlib.p原创 2017-12-28 12:03:58 · 2390 阅读 · 0 评论 -
LR(Logistic Regression) & XGBOOST 学习笔记
LR(Logistic Regression) & XGBOOST 在 CRT中的应用此文将持续更新,欢迎指导交流~立志要成为一位优秀炼丹师的我搞起 CRT 来突然压力山大。数据是最最主要的原因,而且毕竟调得少,慢慢攒点经验吧。在 CRT 中,最大的两个问题就是: - 数据不均衡。在投放的大量广告中真正转化的样本数量很少。 - 数据稀疏。每个样本的特征信息都不太全。LR 和 X原创 2017-12-28 17:21:49 · 8310 阅读 · 2 评论 -
XGBOOST + LR 模型融合 python 代码
XGBOOST + LR (XGBOOST grid search)先留个广告,最近做一个数据挖掘的比赛,主要用的就是 xgboost,等比赛完后年前好好整理代码开源,到时候代码会比下面整份完整。XGBOOST + LR 是 CTR 常用的一种方式。下面是实现 XGBOOST + LR 的代码,具体的原理不做细说。有了下面的代码框架,你可以对 xgboost 进行参数优化搜索,同时可以利用原创 2018-01-08 18:16:11 · 14436 阅读 · 6 评论 -
Sketch Learning - SVG 是什么?
SVG 简介在 Sketch(草图)研究中,我们经常会遇到 SVG 格式的图像文件。和 PNG 不同,SVG是一种矢量图,它可以保存草图绘图过程中每个笔画的坐标信息。所以,理解 SVG 对于研究草图是很有意义的。PNG 实际上是像素点,是一个矩阵,比如 RGB 三通道的 224 * 224 像素的一张 PNG 图片,就是一个 224 * 224 * 3 的实数矩阵。但是 SVG 则是一门编原创 2018-01-26 15:47:52 · 1514 阅读 · 0 评论 -
TensorFlow入门(八)tensorboard 的一个简单示例
关于 tensorboard 的一点心得1.一定要学会使用 tf.variable_scope() 和 tf.name_scope(),否则稍微复杂一点的网络都会乱七八糟。你可以通过上图中的 graph 来看看自己构建的网络结构。2.使用 tensorboard 来看 training 和 validation 的 loss 和 accuracy 变化对于调参非常非常有帮助。经验足的炼丹选手通过原创 2017-11-21 16:45:38 · 8493 阅读 · 1 评论 -
Python+不同的数据存储方式比较
本文来探索一下python中提供的各种数据保存格式的性能如何。主要以一个 ndarray 格式的数据进行处理分析。包括下面几种方式:.bin格式, tofile() 和 fromfile().npy格式,save() 和 load().txt 或者 .csv格式,savetxt() 和 loadtxt().h5 文件.pkl 文件import numpy as npfrom __fut原创 2017-07-03 17:26:37 · 14302 阅读 · 3 评论 -
ubuntu繁简体转换 opencc的安装与使用
最近在看word2vec的使用,看的是下面这个教程:中英文维基百科语料上的Word2Vec实验。opencc介绍opencc是一款非常实用的繁简体字转换工具,转换速度非常快而且效果非常好。看了教程上面的各种安装方式介绍,最后才发现其实直接使用apt-get命令安装就能正常使用了。opencc安装与使用" 一行命令搞定安装 "sudo apt-get install opencc" 一行命令使用 "原创 2016-10-29 13:59:26 · 8708 阅读 · 2 评论 -
高斯消元法求解线性方程组(附python代码)
输入:a是m×n的系数矩阵,b是m×1的(列)向量。 输出:方程组的通解。用高斯消元法(行化简法)解线性方程组步骤1.构造方程组的增广矩阵2.从最左边列往右,使用行化简算法把增广矩阵化为阶梯形,确定矩阵是否有解: 若最后一列为主元列(最后一行非零行形如 [0 0 0 5]),无解,返回无解。3.继续行化简,把主元上面的所有的元素都化为0,把主元位置变成1.4.把每个主元列对应的变量表示原创 2016-11-18 16:53:25 · 13651 阅读 · 2 评论 -
PCA的Python实现
PCA的Python实现pca讲解:http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.htmlpython实现:http://blog.csdn.net/u012162613/article/details/42177327 """总的代码.Func: 对原始的特征矩阵进行降维, lowDataMat为降维之后返回新的特原创 2016-11-16 17:04:49 · 3776 阅读 · 1 评论 -
numpy 常用操作
numpy提供了ndarray和matrix两种类型的数据,为我们进行科学运算提供了非常便捷的运算工具。相对来说,我觉得其实还是MATLAB对于矩阵运算的支持更加直观易操作,但是作为Python使用者,怎能不把numpy用熟用透呢。在numpy中,同样一种操作可能提供了很多种不同的方式,具体怎么来实现完全是使用者个人习惯。对于和我一样的菜鸟,我觉得最好是从一开始就养成较好的操作习惯。numpy的二维原创 2017-02-10 12:37:17 · 4355 阅读 · 0 评论 -
pymongo 和 xpath 基本操作
@creat_data: 2017-05-01 @author: huangyongye前言: 相信有不少人和我一样,最开始学习 python 就是为了写个爬虫脚本从网上抓数据。第一次从网页上抓取信息的感觉很爽。那时候用得最多的莫过于正则表达式,但是很久没用,基本也都忘光了。后来学习了 xpath 神器,简直所向披靡,比正则方便多了。对于文本数据,抓取下来后存在 mongodb 中是个很不错的选择原创 2017-05-07 11:19:16 · 1232 阅读 · 0 评论 -
pandas apply 函数 多进程实现
@creat_data: 2017-05-08 @author: huangyongye 前言: 在进行数据处理的时候,我们经常会用到 pandas 。但是 pandas 本身好像并没有提供多进程的机制。本文将介绍如何来自己实现 pandas (apply 函数)的多进程执行。其中,我们主要借助 joblib 库,这个库为python 提供了一个非常简洁方便的多进程方法。所以,本文将按照下面的原创 2017-05-08 17:13:36 · 18721 阅读 · 1 评论 -
python+HMM之维特比解码
HMM 回顾《统计学习方法》 p.174隐马尔科夫模型(HMM)有三个基本的问题(1)概率计算问题。给定模型 λ=(A,B,Pi)\lambda = (A, B, Pi) 和观测序列 O(o1,o2,...,oT)O(o_1, o_2, ..., o_T),计算在模型 λ\lambda 下观测序列 OO 的概率 P(O|λ)P(O|\lambda)(2)学习问题。已知观测序列 O(o1,o2,.原创 2017-06-28 13:49:13 · 4799 阅读 · 0 评论 -
python 下的 word2vec 学习笔记
1.ubuntu下安装gensimrefer to: ubuntu 14.04 安装gensim为了保证安装成功,首先升级一下easy_install工具。sudo easy_install -U setuptools之后使用easy_install进行安装,使用apt-get安装会遇到编码出错,不知为什么,使用easy_install安装成功就行了。sudo easy_install --upgr原创 2016-10-29 22:43:48 · 42572 阅读 · 1 评论 -
Sketch Learning - SVG 生成 PNG 和坐标序列
整个项目的代码在我的 GitHub 上面: https://github.com/yongyehuang/svg_parser ,直接 download 后可以使用。首先需要安装的一些 python 库:pip install svgwritepip install svgpathtoolspip install wand1. svg 生成 pngrefer: http原创 2018-01-27 18:20:45 · 2531 阅读 · 3 评论