安装CUDA、cuDNN和TensorFlow

Linux版

1.CUDA

下载链接
安装方法在下载页面里可见,使用runfile安装较为方便。Tensorflow只支持到10.0,这里我们下载10.0的版本。
安装完后编辑环境变量,sudo vim ~/.bashrc,加入:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64
export PATH=$PATH:/usr/local/cuda-10.0/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.0

使修改立刻生效:

source ~/.bashrc

如果显卡版本过低则需卸载显卡驱动。
显卡驱动卸载方法:

  1. 关闭桌面显示管理器:
sudo service lightdm stop
  1. 卸载显卡驱动:
sudo apt-get remove nvidia*

2.cuDNN

下载链接
下载与Linux和CUDA版本一致的cuDNN版本,包括runtime,developersample版本。
按该文档进行安装和测试

3.Tensorflow

CPU版:

 sudo pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ tensorflow==1.14.0

GPU版:

sudo pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ tensorflow-gpu==1.14.0

安装完成后若import tensorflow出现TypeError: descriptor ‘subclasses’ of ‘type’ object needs an argument错误,尝试对pandas降级可解决问题:

sudo pip3 install -i https://pypi.doubanio.com/simple pandas==0.24.1

Windows版

使用Anaconda

  1. 下载安装Anaconda
  2. 打开cmd/powershell prompt,新建环境: conda create --name tensor
  3. 加入tensor环境:conda activate tensor
  4. 安装tensorflow-gpu : conda install tensorflow-gpu ,过程中cuda和cudnn都会自动安装,非常的方便。

注意:在tensor环境中使用jupyter时,也需要独立安装一个jupyter,否则运行后使用的是base环境,无法导入在tensor环境中安装的包

测试

import tensorflow as tf
import os

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

a = tf.constant(1.)
b = tf.constant(2.)
print(a+b)

tf.config.list_physical_devices('GPU')

输出

tf.Tensor(3.0, shape=(), dtype=float32)
[PhysicalDevice(name=’/physical_device:GPU:0’, device_type=‘GPU’)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值