Linux版
1.CUDA
下载链接
安装方法在下载页面里可见,使用runfile安装较为方便。Tensorflow只支持到10.0,这里我们下载10.0的版本。
安装完后编辑环境变量,sudo vim ~/.bashrc
,加入:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64
export PATH=$PATH:/usr/local/cuda-10.0/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.0
使修改立刻生效:
source ~/.bashrc
如果显卡版本过低则需卸载显卡驱动。
显卡驱动卸载方法:
- 关闭桌面显示管理器:
sudo service lightdm stop
- 卸载显卡驱动:
sudo apt-get remove nvidia*
2.cuDNN
下载链接
下载与Linux和CUDA版本一致的cuDNN版本,包括runtime,developer和sample版本。
按该文档进行安装和测试
3.Tensorflow
CPU版:
sudo pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ tensorflow==1.14.0
GPU版:
sudo pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ tensorflow-gpu==1.14.0
安装完成后若import tensorflow出现TypeError: descriptor ‘subclasses’ of ‘type’ object needs an argument错误,尝试对pandas降级可解决问题:
sudo pip3 install -i https://pypi.doubanio.com/simple pandas==0.24.1
Windows版
使用Anaconda
- 下载安装Anaconda
- 打开cmd/powershell prompt,新建环境:
conda create --name tensor
- 加入tensor环境:
conda activate tensor
- 安装tensorflow-gpu :
conda install tensorflow-gpu
,过程中cuda和cudnn都会自动安装,非常的方便。
注意:在tensor环境中使用jupyter时,也需要独立安装一个jupyter,否则运行后使用的是base环境,无法导入在tensor环境中安装的包
测试
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
a = tf.constant(1.)
b = tf.constant(2.)
print(a+b)
tf.config.list_physical_devices('GPU')
输出
tf.Tensor(3.0, shape=(), dtype=float32)
[PhysicalDevice(name=’/physical_device:GPU:0’, device_type=‘GPU’)]