题目:http://codeforces.com/gym/101741/problem/A
题意:
给三个不下降数列;
求满足|ai - bj| ≤ d, |ai - ck| ≤ d, and |bj - ck| ≤ d的方案数(i, j, k)
数据范围5e5
分析:
如何不重不漏统计?
对每个方案,只用最小的那个数统计一次;
开3个指针pa、pb、pc;
每次判断a[pa]、b[pb]、c[pc]哪个最小;
然后在另外两个数组中upper_bound(最小那个数+d);
ans+=(up_bound(i,小+d)-pi)*(up_bound(j,小+d)-pj)
比如最小的是a[pa],以上操作显然可以满足|ai - bj| ≤ d, |ai - ck| ≤ d;
那么如何满足的|bj - ck| ≤ d呢?
注意到,即使二分到的b最大也才为a[pa]+d,满足条件的c最小也才为c[pc]>=a[pa],所以b-c<=d;反之亦然c-b<=d,所以|b - c| ≤ d;
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int tmax=5e5+5;
const int inf=1e9+5;
int d,na,nb,nc,a[tmax],b[tmax],c[tmax];
ll ans;
int main()
{
int i,pa,pb,pc;
while(scanf("%d%d%d%d",&d,&na,&nb,&nc)==4)
{
for(i=1;i<=na;i++)
scanf("%d",&a[i]);
for(i=1;i<=nb;i++)
scanf("%d",&b[i]);
for(i=1;i<=nc;i++)
scanf("%d",&c[i]);
a[na+1]=b[nb+1]=c[nc+1]=inf;
pa=pb=pc=1;
ans=0;
while(pa<=na&&pb<=nb&&pc<=nc)
{
if(a[pa]<=b[pb]&&a[pa]<=c[pc])
{
ans+=1ll*(upper_bound(&b[pb],&b[nb]+1,a[pa]+d)-&b[pb])*(upper_bound(&c[pc],&c[nc]+1,a[pa]+d)-&c[pc]);
pa++;
}
else if(b[pb]<=a[pa]&&b[pb]<=c[pc])
{
ans+=1ll*(upper_bound(&a[pa],&a[na]+1,b[pb]+d)-&a[pa])*(upper_bound(&c[pc],&c[nc]+1,b[pb]+d)-&c[pc]);
pb++;
}
else
{
ans+=1ll*(upper_bound(&b[pb],&b[nb]+1,c[pc]+d)-&b[pb])*(upper_bound(&a[pa],&a[na]+1,c[pc]+d)-&a[pa]);
pc++;
}
}
printf("%I64d\n",ans);
}
return 0;
}