HDU 6601. Keen On Everything But Triangle (主席树+斐波那契性质)

题目: http://acm.hdu.edu.cn/showproblem.php?pid=6601

题意:
N个数,Q个询问;
每个询问给定一个区间[L,R],问区间内能组成三角形的三个数的和最大是多少。

分析:
性质1:选区间内大小连续的三个数更优。

性质2:查询不会超过50次就能找到可行方案。
(Proof) 设三个数从大到小分别为a1,a2,a3;
若其能组成三角形,则a2+a3>a1;
考虑其不能组成三角形的时候,有a1>a2+a3;
由于Fibonacci第40多项就已达到1e9,因此查询不会超过50次就会找到可行方案。

因此,用主席树即可搞定。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long llong;
const int tmax=1e5+5;
int n,m,a[tmax],T[tmax],cnt;
int sum[tmax<<5],ls[tmax<<5],rs[tmax<<5];
set<int> SET;
map<int,int> rrank,who;
int build(int l,int r)
{
    int root=++cnt;
    sum[root]=0;
    int mid=(l+r)>>1;
    if(l<r)
    {
        ls[root]=build(l,mid);
        rs[root]=build(mid+1,r);
    }
    return root;
}
int update(int pre,int l,int r,int x)
{
    int root=++cnt;
    ls[root]=ls[pre];
    rs[root]=rs[pre];
    sum[root]=sum[pre]+1;
    if(l<r)
    {
        int mid=(l+r)>>1;
        if(x<=mid)
            ls[root]=update(ls[pre],l,mid,x);
        else
            rs[root]=update(rs[pre],mid+1,r,x);
    }
    return root;
}
int query(int u,int v,int l,int r,int k)
{
    if(sum[v]-sum[u]<k) return -1;
    if(l>=r) return l;
    int num=sum[ls[v]]-sum[ls[u]];
    int mid=(l+r)>>1;
    if(num>=k)
        return query(ls[u],ls[v],l,mid,k);
    else
        return query(rs[u],rs[v],mid+1,r,k-num);
}
int main()
{
    int q,ll,rr;
    while(scanf("%d%d",&n,&q)==2)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            SET.insert(a[i]);
        }
        for(set<int>::reverse_iterator iter=SET.rbegin();iter!=SET.rend();iter++)
        {
            rrank[*iter]=++m;
            who[m]=*iter;
        }
        T[0]=build(1,m);
        for(int i=1;i<=n;i++)
            T[i]=update(T[i-1],1,m,rrank[a[i]]);
        for(int i=1;i<=q;i++)
        {
            scanf("%d%d",&ll,&rr);
            int large[3]={-1,query(T[ll-1],T[rr],1,m,1),query(T[ll-1],T[rr],1,m,2)};
            bool ok=false;
            for(int j=3;j<=rr-ll+1;j++)
            {
                large[0]=large[1];large[1]=large[2];
                large[2]=query(T[ll-1],T[rr],1,m,j);
                if(large[0]==-1||large[1]==-1||large[2]==-1) continue;
                if(who[large[1]]+who[large[2]]>who[large[0]])
                {
                    printf("%lld\n",1ll*who[large[0]]+who[large[1]]+who[large[2]]);
                    ok=true;
                    break;
                }
            }
            if(!ok) printf("-1\n");
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值