题目: http://acm.hdu.edu.cn/showproblem.php?pid=6601
题意:
N个数,Q个询问;
每个询问给定一个区间[L,R],问区间内能组成三角形的三个数的和最大是多少。
分析:
性质1:选区间内大小连续的三个数更优。
性质2:查询不会超过50次就能找到可行方案。
(Proof) 设三个数从大到小分别为a1,a2,a3;
若其能组成三角形,则a2+a3>a1;
考虑其不能组成三角形的时候,有a1>a2+a3;
由于Fibonacci第40多项就已达到1e9,因此查询不会超过50次就会找到可行方案。
因此,用主席树即可搞定。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long llong;
const int tmax=1e5+5;
int n,m,a[tmax],T[tmax],cnt;
int sum[tmax<<5],ls[tmax<<5],rs[tmax<<5];
set<int> SET;
map<int,int> rrank,who;
int build(int l,int r)
{
int root=++cnt;
sum[root]=0;
int mid=(l+r)>>1;
if(l<r)
{
ls[root]=build(l,mid);
rs[root]=build(mid+1,r);
}
return root;
}
int update(int pre,int l,int r,int x)
{
int root=++cnt;
ls[root]=ls[pre];
rs[root]=rs[pre];
sum[root]=sum[pre]+1;
if(l<r)
{
int mid=(l+r)>>1;
if(x<=mid)
ls[root]=update(ls[pre],l,mid,x);
else
rs[root]=update(rs[pre],mid+1,r,x);
}
return root;
}
int query(int u,int v,int l,int r,int k)
{
if(sum[v]-sum[u]<k) return -1;
if(l>=r) return l;
int num=sum[ls[v]]-sum[ls[u]];
int mid=(l+r)>>1;
if(num>=k)
return query(ls[u],ls[v],l,mid,k);
else
return query(rs[u],rs[v],mid+1,r,k-num);
}
int main()
{
int q,ll,rr;
while(scanf("%d%d",&n,&q)==2)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
SET.insert(a[i]);
}
for(set<int>::reverse_iterator iter=SET.rbegin();iter!=SET.rend();iter++)
{
rrank[*iter]=++m;
who[m]=*iter;
}
T[0]=build(1,m);
for(int i=1;i<=n;i++)
T[i]=update(T[i-1],1,m,rrank[a[i]]);
for(int i=1;i<=q;i++)
{
scanf("%d%d",&ll,&rr);
int large[3]={-1,query(T[ll-1],T[rr],1,m,1),query(T[ll-1],T[rr],1,m,2)};
bool ok=false;
for(int j=3;j<=rr-ll+1;j++)
{
large[0]=large[1];large[1]=large[2];
large[2]=query(T[ll-1],T[rr],1,m,j);
if(large[0]==-1||large[1]==-1||large[2]==-1) continue;
if(who[large[1]]+who[large[2]]>who[large[0]])
{
printf("%lld\n",1ll*who[large[0]]+who[large[1]]+who[large[2]]);
ok=true;
break;
}
}
if(!ok) printf("-1\n");
}
}
return 0;
}