两个排序数组的中位数

35 篇文章 0 订阅

float findMedianSortedArrays(int *a, int lenA, int *b, int lenB)
{
    if (a == NULL || b == NULL || lenA < 1 || lenB < 1)
    {
        return 0;
    }
    int i = 0;
    int j = 0;
    int k = 0;
    int mid = 0;
    int flag = 0;
    int pre = 0;
    if ((lenA + lenB) % 2 == 0)
    {
        flag = 2;
        mid = (lenA + lenB) / 2;
    }
    else
    {
        flag = 1;
        mid = (lenA + lenB + 1) / 2;
    }
    while (k < mid && i < lenA && j < lenB)
    {
        if (a[i] > b[j])
        {
            j++;
            k++;
            pre = 2;
        }
        else
        {
            i++;
            k++;
            pre = 1;
        }
    }

    if (k == mid)
    {
        if (pre == 1)
        {
            if (flag == 1)
            {
                return a[i - 1];
            }
            if (flag == 2)
            {
                if (j == 0)
                {
                    if (i < lenA && a[i] < b[j])
                    {
                        return (float)(a[i - 1] + a[i])/2;
                    }
                    else
                    {
                        return (float)(a[i - 1] + b[j])/2;
                    }
                }
                else
                {
                    if (i < lenA && a[i] < b[j])
                    {
                        return (float)(a[i - 1] + a[i])/2;
                    }
                    else
                    {
                        return (float)(a[i - 1] + b[j])/2;
                    }
                }
            }
        }
        if (pre == 2)
        {
            if (flag == 1)
            {
                return b[j - 1];
            }
            if (flag == 2)
            {
                if (i == 0)
                {
                    if (j < lenB && b[j] < a[i])
                    {
                        return (float)(b[j - 1] + b[j])/2;
                    }
                    else
                    {
                        return (float)(b[j - 1] + a[i])/2;
                    }
                }
                else
                {
                    if (j < lenB && b[j] < a[i])
                    {
                        return (float)(b[j - 1] + b[j])/2;
                    }
                    else
                    {
                        return (float)(b[j - 1] + a[i])/2;
                    }
                }
            }
        }
    }
    else if (i == lenA)
    {
        if (flag == 1)
        {
            return b[j + mid - k -1];
        }
        if (flag == 2)
        {
            return (float)(b[j + mid - k - 1] + b[j + mid - k])/2;
        }
    }
    else if (j == lenB)
    {
        if (flag == 1)
        {
            return a[j + mid - k -1];
        }
        if (flag == 2)
        {
            return (float)(a[j + mid - k - 1] + a[j + mid - k])/2;
        }
    }
}




Median of Two Sorted Arrays

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

标签: Divide and Conquer Array Binary Search
分析

这是一道非常经典的题。这题更通用的形式是,给定两个已经排序好的数组,找到两者所有元素中第$k$大的元素。

$O(m+n)$的解法比较直观,直接merge两个数组,然后求第$k$大的元素。

不过我们仅仅需要第$k$大的元素,是不需要“排序”这么复杂的操作的。可以用一个计数器,记录当前已经找到第$m$大的元素了。同时我们使用两个指针{pA}和{pB},分别指向A和B数组的第一个元素,使用类似于merge sort的原理,如果数组A当前元素小,那么{pA++},同时{m++};如果数组B当前元素小,那么{pB++},同时{m++}。最终当$m$等于$k$的时候,就得到了我们的答案,$O(k)$时间,$O(1)$空间。但是,当$k$很接近$m+n$的时候,这个方法还是$O(m+n)$的。

有没有更好的方案呢?我们可以考虑从$k$入手。如果我们每次都能够删除一个一定在第$k$大元素之前的元素,那么我们需要进行$k$次。但是如果每次我们都删除一半呢?由于A和B都是有序的,我们应该充分利用这里面的信息,类似于二分查找,也是充分利用了“有序”。

假设A和B的元素个数都大于$k/2$,我们将A的第$k/2$个元素(即{A[k/2-1]})和B的第$k/2$个元素(即{B[k/2-1]})进行比较,有以下三种情况(为了简化这里先假设$k$为偶数,所得到的结论对于$k$是奇数也是成立的):

\item {A[k/2-1] == B[k/2-1]}
\item {A[k/2-1] > B[k/2-1]}
\item {A[k/2-1] < B[k/2-1]}

如果{A[k/2-1] < B[k/2-1]},意味着{A[0]}到{A[k/2-1}的肯定在$A \cup B$的top k元素的范围内,换句话说,{A[k/2-1}不可能大于$A \cup B$的第$k$大元素。留给读者证明。

因此,我们可以放心的删除A数组的这$k/2$个元素。同理,当{A[k/2-1] > B[k/2-1]}时,可以删除B数组的$k/2$个元素。

当{A[k/2-1] == B[k/2-1]}时,说明找到了第$k$大的元素,直接返回{A[k/2-1]}或{B[k/2-1]}即可。

因此,我们可以写一个递归函数。那么函数什么时候应该终止呢?

\item 当A或B是空时,直接返回{B[k-1]}或{A[k-1]};
\item 当{k=1}是,返回{min(A[0], B[0])};
\item 当{A[k/2-1] == B[k/2-1]}时,返回{A[k/2-1]}或{B[k/2-1]}

代码1

01 // LeetCode, Median of Two Sorted Arrays
02 // 时间复杂度O(log(m+n)),空间复杂度O(log(m+n))
03 class Solution {
04 public:
05     double findMedianSortedArrays(int A[], int m, int B[], int n) {
06         int total = m + n;
07         if (total & 0x1)
08             return find_kth(A, m, B, n, total / 2 + 1);
09         else
10             return (find_kth(A, m, B, n, total / 2)
11                     + find_kth(A, m, B, n, total / 2 + 1)) / 2.0;
12     }
13 private:
14     static int find_kth(int A[], int m, int B[], int n, int k) {
15         //always assume that m is equal or smaller than n
16         if (m > n) return find_kth(B, n, A, m, k);
17         if (m == 0) return B[k - 1];
18         if (k == 1) return min(A[0], B[0]);
19  
20         //divide k into two parts
21         int ia = min(k / 2, m), ib = k - ia;
22         if (A[ia - 1] < B[ib - 1])
23             return find_kth(A + ia, m - ia, B, n, k - ia);
24         else if (A[ia - 1] > B[ib - 1])
25             return find_kth(A, m, B + ib, n - ib, k - ib);
26         else
27             return A[ia - 1];
28     }

29 };


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值