MapReduce和CUDA的比较

在做分布式作业时,我们组想用分布式系统来实现一个图形学应用。

图形学有很多需要并行计算的地方,比如渲染一个复杂场景。现在的很多图形学的并行计算都是基于CUDA来实现的,却没有使用分布式系统来实现,下面我试图来分析一下原因。

CUDA的一个特点是:高算术强度(算术强度=算术操作次数/存储单元操作次数)。我们可以看到存储单元操作次数越大算术强度将会越低。所以CUDA适合的操作时算术操作次数高,但数据移动的次数少。所以在CUDA中线程非常多,而且并行也是线程模型。

而分布式系统的一个特点是数据量非常大。而且数据访问量也很大。

所以我们需要找一个图形学中的一个数据量非常大,而且计算量不是很大的应用或算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值