机器学习入门计划

机器学习入门学习计划

下图是网上推荐的机器学习入门学习大概的路径图:


         在了解了一些内容之后,我也按照这个图做出学习计划,计划尽量详细,并列出一些时间期限,同时定期写一些总结,来记录自己的学习过程,同时也让自己可以对自己学过的内容进行温习。
      如上图所示,机器学习需要一定的编程基础,数学基础,而后还要掌握机器学习中的一些经典的典型算法。而且这三个基础也是需要并行学习的部分。因为机器学习是一个将数学只是/算法理论和工程实践紧密结合的领域,需要扎实的理论基础帮助引导数据分析与模型调优,同时也需要精湛的工程开发能力去高校化的训练和部署模型与服务 故学习计划也从这三个方面的学习来安排。
      数学基础:1.微积分  2.线性代数 3.概率与统计
      编程基础:1.C++/JAVA  2.Python
      典型算法: 1.回归问题的算法 2.分类问题的算法 3.聚类问题的算法 4.降维的算法 5.推荐系统的算法 6.模型组合和提升的泛等
具体的学习计划:
       数学知识方面:每天早上时间看数学方面的书籍,具体包括数值分析,数理统计,线性代数
       典型算法: 现阶段每天中午看斯坦福大学的机器学习课程,每节课涉及的内容都要认真总结
       编程基础:目前阶段先每天晚上看些数据结构与算法的知识,并用C++进行实现。
2016年3月7号
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值