力扣第491题 递增子序列 c++ 回溯题

题目

491. 递增子序列

中等

相关标签

位运算   数组   哈希表   回溯

给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。

数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。

示例 1:

输入:nums = [4,6,7,7]
输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]

示例 2:

输入:nums = [4,4,3,2,1]
输出:[[4,4]]

提示:

  • 1 <= nums.length <= 15
  • -100 <= nums[i] <= 100

思路和解题方法

  1. 如何寻找递增的子序列?

遍历数组时,只有当当前数字比路径中的最后一个数字大才能将其加入到路径中;否则跳过该数字。

  1. 如何存储已经访问过的数字?

使用unordered_set来存储已经访问过的数字,确保同一层级中不会有重复的数字。

  1. 如何判断当前路径是否符合要求?

当路径中的数字个数大于1时,将其加入到结果数组中。

回溯法的基本思路是:从问题的某一状态开始,通过一系列的决策,达到一个最终的状态。在一系列的决策中,如果某个决策被发现是错误的或不能得到最终的状态,就回溯到上一个状态进行另外的决策,直到找到最终的状态为止。

在本题中,我们通过一个backtracking函数来实现回溯法。递归调用backtracking函数时,传入的参数是当前遍历到的数字在数组中的索引位置。在回溯过程中,我们需要根据一定的条件判断是否将当前数字加入到路径中,并对路径进行相应的修改。回溯时,撤销对路径的修改,即将当前数字移出路径。

        最终,我们返回找到的递增子序列结果数组。

复杂度

        时间复杂度:

                O(N * 2^N)

时间复杂度:

  • 首先,我们需要遍历数组中的每个元素,因此时间复杂度为O(N),其中N是数组的长度。
  • 在backtracking函数中,在最坏的情况下,我们需要将每个元素加入到路径中,并进行递归调用,因此递归的总次数是指数级别的。但是,通过使用unordered_set来剪枝,可以避免同一层级出现重复的数字,从而降低递归的总次数。因此,我们可以说递归调用的平均次数是常数级别的,即O(1)。结合上述两点,我们可以认为backtracking函数的时间复杂度是O(N * 2^N)。 综上所述,算法的总时间复杂度是O(N * 2^N)。

        空间复杂度

                O(N)

空间复杂度:

  • 在backtracking函数中,使用了一个额外的unordered_set来存储已经访问过的数字。在最坏的情况下,当所有数字都不重复时,unordered_set中会存储整个数组,因此空间复杂度是O(N)。
  • 另外,我们还有一个辅助数组path来存储当前的路径,其长度不会超过数组的长度,因此空间复杂度是O(N)。 综上所述,算法的总空间复杂度是O(N)。

c++ 代码

class Solution {
public:
    vector<vector<int>> ans;   // 存储结果的二维数组
    vector<int> path;   // 当前路径
    void backtracking(vector<int> &nums ,int index) {
        if (path.size() > 1) ans.push_back(path);   // 如果当前路径中的数字个数大于1,则将路径加入结果数组中
        unordered_set<int> uset;   // 使用unordered_set来存储已经访问过的数字,确保同一层级中不会有重复的数字
        for (int i = index; i < nums.size(); i++) {
            if (!path.empty() && nums[i] < path.back() || uset.find(nums[i]) != uset.end()) continue;
            // 如果当前路径不为空且当前数字小于路径中的最后一个数字,或者当前数字在uset中已经存在,则跳过该数字
            uset.insert(nums[i]);   // 将当前数字加入uset中
            path.push_back(nums[i]);   // 将当前数字加入路径中
            backtracking(nums, i + 1);   // 递归调用下一层级
            path.pop_back();   // 回溯,撤销对路径的修改,即将当前数字移出路径
        }
    }
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        ans.clear();
        path.clear();
        backtracking(nums, 0);
        return ans;
    }
};

觉得有用的话可以点点赞,支持一下。

如果愿意的话关注一下。会对你有更多的帮助。

每天都会不定时更新哦  >人<  。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值