《算法笔记》读书记录DAY_59

CHAPTER_11  提高篇(5)——动态规划

11.7.3 完全背包问题

完全背包问题叙述如下:

有n种物品,每种物品的单件重量为w[i],价值为c[i]。现有一个容量为V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品有无数件。其中所有数据都为正整数。

可以看出,完全背包和01背包问题的唯一区别在于每种物品的数量有无数件。因此我们的动态规划策略也要做出一些改变。

令dp[i][v]表示前 i 件物品恰好放入容量为v的背包中能获得的最大价值。对每种物品,同样有两种策略:

(1)不放第 i 件物品,那么dp[i][v]=dp[i-1][v],这和01背包中的策略相同。

(2) 放第 i 件物品。这里的处理和01背包有所不同,因为每种物品数量无限,选择放第 i 件物品后并不是转移到dp[i-1][v-w[i]]状态,而是转移到dp[i][v-w[i]]。放了第 i 件物品后还可以继续放它,直到所剩空间v-w[i]无法大于等于0为止。

由此状态转移方程如下:

dp[i][v]=max\left ( dp[i-1][v],dp[i][v-w[i]]+c[i] \right )

\left ( 1\leqslant i\leqslant n,w[i]\leqslant v\leqslant V \right )

边界:dp[0][v]=0。

至此,我们已经能够写出完全背包的代码,这里不再给出代码,只需参考01背包的二维数组实现方法,将状态转移部分做修改即可。

同样地,在完全背包中我们也可以用滚动数组来降低空间复杂度。写成一维形式后与01背包相同,唯一的区别在于v的枚举必须是正向的,这与01背包相反。

for(int i=1;i<=n;i++) {
    for(int v=w[i];v<=V;v++) {
        dp[v]=max(dp[v],dp[v-w[i]]+c[i]);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值