前言
笔者在之前的研究中,尝试对车辆轨迹数据进行空间聚类,以期望发现车辆在行驶过程中的停留信息。在笔者之前的文章中,笔者使用了DBSCAN算法来做这一件事。
然而,对于时序的车辆经纬度数据,DBSCAN有一个很大的问题——没有考虑数据中蕴含的时间信息!时间信息是时间序列数据与其他数据区别的重要特征。举个例子:在使用DBSCAN对车辆的经纬度进行聚类时,它仅仅是把那些空间相近的数据聚成一类,可是同一类中的数据可能时间相差很大。我们想要发现车辆的驻留行为,那些空间和时间都相近的轨迹点才能聚成一类,这才表示这辆车可能在某段时间因为某原因发生了停留。
正因如此,很多年前的研究者就对DBSCAN进行改进,有了适合用作时间序列数据密度聚类的算法——ST-DBSCAN。STDBSCAN的具体算法本文不再赘述,基本流程和DBSCAN无异,只是在可达点寻找中加入了时间阈值作为限制条件。若想要了解详细算法,可自行互联网搜索。
本文还是以如下格式车辆轨迹数据为例,实提供了ST-DBSCAN对车辆轨迹数据聚类并分析的方法:
collect_time | id | lon | lat |
---|---|---|---|
时间 | 车辆标识 | 经度 | 纬度 |
为了尽量去除噪声影响,车辆轨迹数据已经经过滤波平滑,平滑方法可见作者之前文章:https://blog.csdn.net/jgsecurity/article/details/140608431。
一、单辆车轨迹的聚类与分析
为了尽量与scikit-learn库中的使用方法相似,本文用类来实现STDBSCAN。class STDBSCAN的内容可以放在单独文件中作为模块导入,也可以同一文件中使用。
1.引入库
使用了数学计算库numpy,数据分析库pandas,机器学习库scikit-learn,地理相关库shapely和geopy,绘图库matplotlib。
import numpy as np
import pandas as pd
from datetime import timedelta
from shapely.geometry import MultiPoint
from geopy.distance import great_circle
from sklearn import metrics
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
2.class STDBSCAN实现
采用class来实现STDBSCAN。
类有四个属性:spatial_threshold(距离阈值,单位米)、temporal_threshold(时间阈值,单位分钟)、min_neighbors(邻域内最少点数)、labels_(聚类后的标签)。在__init__构造函数中为前三个参数设置了默认值。
retrieve_neighbors(self, index_center, df)用于寻找给定一个核心点的所有可达邻居(在距离阈值和时间阈值内)。接受参数index_center(整数: 给定核心点的索引)和df(dataframe: 单个车辆的轨迹点数据集)。函数返回给定核心点所有可达邻居点的索引集合。
fit(self, df)为实现ST-DBSCAN的聚类方法,用于接受某个车辆的轨迹点数据并完成STDBSCAN聚类。接受参数df(dataframe: 单个车辆的轨迹点数据集)。返回当前STDBSCAN类的实例本身。
class STDBSCAN(object):
def __init__(self, spatial_threshold=500.0, temporal_threshold=30.0,
min_neighbors=6):
self.spatial_threshold = spatial_threshold
self.temporal_threshold = temporal_threshold
self.min_neighbors = min_neighbors
self.labels_ = []
# 找到当前核心点的可达邻居
def retrieve_neighbors(self, index_center, df):
neigborhood = []
# index_center为当前核心点索引,选取核心点对应的行数据
center_point = df.loc[index_center]
# 根据时间阈值筛选可达点
min_time = center_point['collect_time'] - timedelta(minutes=self.temporal_threshold)
max_time = center_point['collect_time'] + timedelta(minutes=self.temporal_threshold)
df = df[(df['collect_time'] >= min_time) & (df['collect_time'] <= max_time)]
# 根据距离阈值筛选可达点
for index, point in df.iterrows():
if index != index_center:
distance = great_circle((center_point['lat'